File size: 1,455 Bytes
6a28ae4
d63713d
81894b1
8326c43
81894b1
 
 
 
 
 
 
 
3eb2415
d63713d
 
 
 
3eb2415
8326c43
3eb2415
8326c43
 
 
3eb2415
8326c43
 
 
 
 
 
 
 
6a28ae4
81894b1
 
 
 
 
 
 
3eb2415
8326c43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from typing import List, Union
from urllib.request import Request, urlopen

import numpy as np
from fashion_clip.fashion_clip import FashionCLIP
from PIL import Image


class PreTrainedPipeline:
    def __init__(self, path=""):
        self.model = FashionCLIP("fashion-clip")

    def _download_image(self, url) -> Image:
        user_agent = "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.0.7) Gecko/2009021910 Firefox/3.0.7"
        headers = {"User-Agent": user_agent}
        request = Request(url, None, headers)
        image = Image.open(urlopen(request))
        return image

    def process(self, inputs: Union[str, List[str]]) -> List[float]:
        if isinstance(inputs, str):
            inputs = [inputs]

        images = [self._download_image(url) for url in set(inputs)]

        # Encode the image to generate the embedding
        embeddings = self.model.encode_images(images, batch_size=1)

        # Add all the numpy embeddings together and take the average
        embedding = np.divide(np.sum(embeddings, axis=0), len(embeddings)).tolist()
        return embedding

    def __call__(self, inputs: Union[str, List[str]]) -> List[float]:
        """
        Args:
            inputs (:obj:`str`):
                a string to get the features from.
        Return:
            A :obj:`list` of floats: The features computed by the model.
        """
        embedding = self.process(inputs=inputs)
        return embedding