Create train_model.py
Browse files- train_model.py +47 -0
train_model.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments, TextDataset, DataCollatorForLanguageModeling
|
2 |
+
|
3 |
+
# Charger le modèle et le tokenizer GPT-2
|
4 |
+
model_name = "gpt2"
|
5 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
6 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
7 |
+
|
8 |
+
# Préparer ton dataset (assure-toi que 'train.txt' existe avec tes données)
|
9 |
+
def load_dataset(file_path, tokenizer, block_size=128):
|
10 |
+
return TextDataset(
|
11 |
+
tokenizer=tokenizer,
|
12 |
+
file_path=file_path,
|
13 |
+
block_size=block_size
|
14 |
+
)
|
15 |
+
|
16 |
+
# Charger le dataset
|
17 |
+
train_dataset = load_dataset("train.txt", tokenizer)
|
18 |
+
|
19 |
+
# Préparer les arguments pour l'entraînement
|
20 |
+
training_args = TrainingArguments(
|
21 |
+
output_dir="./thought_model",
|
22 |
+
overwrite_output_dir=True,
|
23 |
+
num_train_epochs=3,
|
24 |
+
per_device_train_batch_size=2,
|
25 |
+
save_steps=500,
|
26 |
+
save_total_limit=2
|
27 |
+
)
|
28 |
+
|
29 |
+
# Préparer le data collator
|
30 |
+
data_collator = DataCollatorForLanguageModeling(
|
31 |
+
tokenizer=tokenizer,
|
32 |
+
mlm=False
|
33 |
+
)
|
34 |
+
|
35 |
+
# Lancer l'entraînement
|
36 |
+
trainer = Trainer(
|
37 |
+
model=model,
|
38 |
+
args=training_args,
|
39 |
+
data_collator=data_collator,
|
40 |
+
train_dataset=train_dataset
|
41 |
+
)
|
42 |
+
|
43 |
+
trainer.train()
|
44 |
+
|
45 |
+
# Sauvegarder le modèle fine-tuné
|
46 |
+
trainer.save_model("./thought_model")
|
47 |
+
tokenizer.save_pretrained("./thought_model")
|