shunxing1234
commited on
Commit
·
15e92fc
1
Parent(s):
d910332
Update README.md
Browse files
README.md
CHANGED
@@ -80,16 +80,16 @@ from transformers import AutoModelForCausalLM
|
|
80 |
from transformers import TopPLogitsWarper, LogitsProcessorList
|
81 |
import pdb
|
82 |
|
83 |
-
#
|
84 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
85 |
tokenizer.padding_side = 'left'
|
86 |
tokenizer.pad_token = tokenizer.unk_token
|
87 |
|
88 |
-
#
|
89 |
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
|
90 |
device = torch.device('cuda')
|
91 |
model.to(device)
|
92 |
-
#
|
93 |
from cyg_conversation import default_conversation
|
94 |
|
95 |
conv = default_conversation.copy()
|
@@ -100,7 +100,7 @@ batch = []
|
|
100 |
conv.append_message(conv.roles[0], question)
|
101 |
conv.append_message(conv.roles[1], None)
|
102 |
batch.append(conv.get_prompt())
|
103 |
-
#
|
104 |
for ci,context in enumerate(contexts):
|
105 |
conv1 = default_conversation.copy()
|
106 |
conv1.append_message(conv.roles[0], context+question)
|
@@ -109,14 +109,14 @@ for ci,context in enumerate(contexts):
|
|
109 |
print('Context长度分布:', [len(text) for text in batch])
|
110 |
print('Context总长度:', sum([len(text) for text in batch]))
|
111 |
|
112 |
-
# Top-P
|
113 |
processors = LogitsProcessorList()
|
114 |
processors.append(TopPLogitsWarper(0.95))
|
115 |
|
116 |
# Copied from https://github.com/bojone/NBCE/blob/main/test.py#L51-L106
|
117 |
@torch.inference_mode()
|
118 |
def generate(max_tokens):
|
119 |
-
"""Naive Bayes-based Context Extension
|
120 |
"""
|
121 |
inputs = tokenizer(batch, padding='longest', return_tensors='pt').to(device)
|
122 |
input_ids = inputs.input_ids
|
@@ -127,7 +127,7 @@ def generate(max_tokens):
|
|
127 |
n = input_ids.shape[0]
|
128 |
|
129 |
for i in range(max_tokens):
|
130 |
-
#
|
131 |
outputs = model(input_ids=input_ids,
|
132 |
attention_mask=attention_mask,
|
133 |
return_dict=True,
|
@@ -136,7 +136,7 @@ def generate(max_tokens):
|
|
136 |
)
|
137 |
past_key_values = outputs.past_key_values
|
138 |
|
139 |
-
# =====
|
140 |
beta, eta = 0.25, 0.1
|
141 |
logits = outputs.logits[:, -1]
|
142 |
logits = logits - logits.logsumexp(dim=-1, keepdims=True)
|
@@ -149,11 +149,11 @@ def generate(max_tokens):
|
|
149 |
logits_uncond = logits[0]
|
150 |
logits_merged = (1 + beta) * logits_max - beta * logits_uncond
|
151 |
logits = torch.where(logits_uncond > -100, logits_merged, logits_max)
|
152 |
-
# =====
|
153 |
|
154 |
-
#
|
155 |
-
# tau = 1
|
156 |
-
#
|
157 |
tau = 0.01
|
158 |
probas = torch.nn.functional.softmax(logits[None] / tau , dim=-1)
|
159 |
next_tokens = torch.multinomial(probas, num_samples=1).squeeze(1)
|
|
|
80 |
from transformers import TopPLogitsWarper, LogitsProcessorList
|
81 |
import pdb
|
82 |
|
83 |
+
# load tokenizer
|
84 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
85 |
tokenizer.padding_side = 'left'
|
86 |
tokenizer.pad_token = tokenizer.unk_token
|
87 |
|
88 |
+
# load Aquila model
|
89 |
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
|
90 |
device = torch.device('cuda')
|
91 |
model.to(device)
|
92 |
+
# load example Context
|
93 |
from cyg_conversation import default_conversation
|
94 |
|
95 |
conv = default_conversation.copy()
|
|
|
100 |
conv.append_message(conv.roles[0], question)
|
101 |
conv.append_message(conv.roles[1], None)
|
102 |
batch.append(conv.get_prompt())
|
103 |
+
# concat context and question
|
104 |
for ci,context in enumerate(contexts):
|
105 |
conv1 = default_conversation.copy()
|
106 |
conv1.append_message(conv.roles[0], context+question)
|
|
|
109 |
print('Context长度分布:', [len(text) for text in batch])
|
110 |
print('Context总长度:', sum([len(text) for text in batch]))
|
111 |
|
112 |
+
# Top-P
|
113 |
processors = LogitsProcessorList()
|
114 |
processors.append(TopPLogitsWarper(0.95))
|
115 |
|
116 |
# Copied from https://github.com/bojone/NBCE/blob/main/test.py#L51-L106
|
117 |
@torch.inference_mode()
|
118 |
def generate(max_tokens):
|
119 |
+
"""Naive Bayes-based Context Extension example code
|
120 |
"""
|
121 |
inputs = tokenizer(batch, padding='longest', return_tensors='pt').to(device)
|
122 |
input_ids = inputs.input_ids
|
|
|
127 |
n = input_ids.shape[0]
|
128 |
|
129 |
for i in range(max_tokens):
|
130 |
+
# model output
|
131 |
outputs = model(input_ids=input_ids,
|
132 |
attention_mask=attention_mask,
|
133 |
return_dict=True,
|
|
|
136 |
)
|
137 |
past_key_values = outputs.past_key_values
|
138 |
|
139 |
+
# ===== NBCE core code starts =====
|
140 |
beta, eta = 0.25, 0.1
|
141 |
logits = outputs.logits[:, -1]
|
142 |
logits = logits - logits.logsumexp(dim=-1, keepdims=True)
|
|
|
149 |
logits_uncond = logits[0]
|
150 |
logits_merged = (1 + beta) * logits_max - beta * logits_uncond
|
151 |
logits = torch.where(logits_uncond > -100, logits_merged, logits_max)
|
152 |
+
# ===== NBCE core code ends =====
|
153 |
|
154 |
+
# Building a distribution and sampling
|
155 |
+
# tau = 1 is standard random sampling,tau->0 is greedy search
|
156 |
+
# For simplicity, top-k and top-p truncation are not implemented here.
|
157 |
tau = 0.01
|
158 |
probas = torch.nn.functional.softmax(logits[None] / tau , dim=-1)
|
159 |
next_tokens = torch.multinomial(probas, num_samples=1).squeeze(1)
|