shunxing1234
commited on
Commit
·
65ffa9d
1
Parent(s):
9ea6bfd
Update modeling_aquila.py
Browse files- modeling_aquila.py +191 -54
modeling_aquila.py
CHANGED
@@ -93,34 +93,83 @@ class AquilaRMSNorm(nn.Module):
|
|
93 |
class AquilaRotaryEmbedding(torch.nn.Module):
|
94 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
95 |
super().__init__()
|
96 |
-
|
97 |
-
self.
|
|
|
|
|
|
|
|
|
98 |
|
99 |
# Build here to make `torch.jit.trace` work.
|
100 |
-
self.
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
103 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
104 |
emb = torch.cat((freqs, freqs), dim=-1)
|
105 |
-
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
106 |
-
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
107 |
|
108 |
def forward(self, x, seq_len=None):
|
109 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
110 |
-
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
111 |
if seq_len > self.max_seq_len_cached:
|
112 |
-
self.
|
113 |
-
|
114 |
-
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
115 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
116 |
-
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
117 |
-
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
118 |
-
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
119 |
return (
|
120 |
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
121 |
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
122 |
)
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
def rotate_half(x):
|
126 |
"""Rotates half the hidden dims of the input."""
|
@@ -142,33 +191,64 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
|
142 |
|
143 |
# Copied from transformers.models.llama.modeling_llama.LlamaMLP with Llama->Aquila
|
144 |
class AquilaMLP(nn.Module):
|
145 |
-
def __init__(
|
146 |
-
self,
|
147 |
-
hidden_size: int,
|
148 |
-
intermediate_size: int,
|
149 |
-
hidden_act: str,
|
150 |
-
):
|
151 |
super().__init__()
|
152 |
-
self.
|
153 |
-
self.
|
154 |
-
self.
|
155 |
-
self.
|
|
|
|
|
|
|
156 |
|
157 |
def forward(self, x):
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
|
161 |
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->Aquila
|
162 |
class AquilaAttention(nn.Module):
|
163 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
164 |
-
|
165 |
def __init__(self, config: AquilaConfig):
|
166 |
super().__init__()
|
167 |
self.config = config
|
168 |
self.hidden_size = config.hidden_size
|
169 |
self.num_heads = config.num_attention_heads
|
170 |
self.head_dim = self.hidden_size // self.num_heads
|
|
|
|
|
171 |
self.max_position_embeddings = config.max_position_embeddings
|
|
|
172 |
|
173 |
if (self.head_dim * self.num_heads) != self.hidden_size:
|
174 |
raise ValueError(
|
@@ -176,10 +256,37 @@ class AquilaAttention(nn.Module):
|
|
176 |
f" and `num_heads`: {self.num_heads})."
|
177 |
)
|
178 |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
179 |
-
self.k_proj = nn.Linear(self.hidden_size, self.
|
180 |
-
self.v_proj = nn.Linear(self.hidden_size, self.
|
181 |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
182 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
185 |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
@@ -195,16 +302,37 @@ class AquilaAttention(nn.Module):
|
|
195 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
196 |
bsz, q_len, _ = hidden_states.size()
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
kv_seq_len = key_states.shape[-2]
|
203 |
if past_key_value is not None:
|
204 |
kv_seq_len += past_key_value[0].shape[-2]
|
205 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
206 |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
207 |
-
# [bsz, nh, t, hd]
|
208 |
|
209 |
if past_key_value is not None:
|
210 |
# reuse k, v, self_attention
|
@@ -213,9 +341,12 @@ class AquilaAttention(nn.Module):
|
|
213 |
|
214 |
past_key_value = (key_states, value_states) if use_cache else None
|
215 |
|
|
|
|
|
|
|
|
|
216 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
217 |
|
218 |
-
attn_weights = torch.clamp(attn_weights, min=-1024., max=1024.)
|
219 |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
220 |
raise ValueError(
|
221 |
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
@@ -228,9 +359,6 @@ class AquilaAttention(nn.Module):
|
|
228 |
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
229 |
)
|
230 |
attn_weights = attn_weights + attention_mask
|
231 |
-
attn_weights = torch.max(
|
232 |
-
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
|
233 |
-
)
|
234 |
|
235 |
# upcast attention to fp32
|
236 |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
@@ -242,10 +370,15 @@ class AquilaAttention(nn.Module):
|
|
242 |
f" {attn_output.size()}"
|
243 |
)
|
244 |
|
245 |
-
attn_output = attn_output.transpose(1, 2)
|
246 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
247 |
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
if not output_attentions:
|
251 |
attn_weights = None
|
@@ -259,11 +392,7 @@ class AquilaDecoderLayer(nn.Module):
|
|
259 |
super().__init__()
|
260 |
self.hidden_size = config.hidden_size
|
261 |
self.self_attn = AquilaAttention(config=config)
|
262 |
-
self.mlp = AquilaMLP(
|
263 |
-
hidden_size=self.hidden_size,
|
264 |
-
intermediate_size=config.intermediate_size,
|
265 |
-
hidden_act=config.hidden_act,
|
266 |
-
)
|
267 |
self.input_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
268 |
self.post_attention_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
269 |
|
@@ -321,7 +450,6 @@ class AquilaDecoderLayer(nn.Module):
|
|
321 |
|
322 |
return outputs
|
323 |
|
324 |
-
|
325 |
AQUILA_START_DOCSTRING = r"""
|
326 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
327 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
@@ -350,7 +478,6 @@ class AquilaPreTrainedModel(PreTrainedModel):
|
|
350 |
supports_gradient_checkpointing = True
|
351 |
_no_split_modules = ["AquilaDecoderLayer"]
|
352 |
_skip_keys_device_placement = "past_key_values"
|
353 |
-
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
354 |
|
355 |
def _init_weights(self, module):
|
356 |
std = self.config.initializer_range
|
@@ -570,7 +697,7 @@ class AquilaModel(AquilaPreTrainedModel):
|
|
570 |
def create_custom_forward(module):
|
571 |
def custom_forward(*inputs):
|
572 |
# None for past_key_value
|
573 |
-
return module(*inputs,
|
574 |
|
575 |
return custom_forward
|
576 |
|
@@ -579,7 +706,6 @@ class AquilaModel(AquilaPreTrainedModel):
|
|
579 |
hidden_states,
|
580 |
attention_mask,
|
581 |
position_ids,
|
582 |
-
None,
|
583 |
)
|
584 |
else:
|
585 |
layer_outputs = decoder_layer(
|
@@ -600,6 +726,7 @@ class AquilaModel(AquilaPreTrainedModel):
|
|
600 |
all_self_attns += (layer_outputs[1],)
|
601 |
|
602 |
hidden_states = self.norm(hidden_states)
|
|
|
603 |
# add hidden states from the last decoder layer
|
604 |
if output_hidden_states:
|
605 |
all_hidden_states += (hidden_states,)
|
@@ -614,13 +741,14 @@ class AquilaModel(AquilaPreTrainedModel):
|
|
614 |
attentions=all_self_attns,
|
615 |
)
|
616 |
|
617 |
-
|
618 |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with LLAMA->AQUILA,Llama->Aquila
|
619 |
class AquilaForCausalLM(AquilaPreTrainedModel):
|
|
|
|
|
620 |
def __init__(self, config):
|
621 |
super().__init__(config)
|
622 |
self.model = AquilaModel(config)
|
623 |
-
|
624 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
625 |
|
626 |
# Initialize weights and apply final processing
|
@@ -705,7 +833,13 @@ class AquilaForCausalLM(AquilaPreTrainedModel):
|
|
705 |
)
|
706 |
|
707 |
hidden_states = outputs[0]
|
708 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
709 |
|
710 |
loss = None
|
711 |
if labels is not None:
|
@@ -766,10 +900,11 @@ class AquilaForCausalLM(AquilaPreTrainedModel):
|
|
766 |
def _reorder_cache(past_key_values, beam_idx):
|
767 |
reordered_past = ()
|
768 |
for layer_past in past_key_values:
|
769 |
-
reordered_past += (
|
|
|
|
|
770 |
return reordered_past
|
771 |
|
772 |
-
|
773 |
@add_start_docstrings(
|
774 |
"""
|
775 |
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
@@ -851,7 +986,9 @@ class AquilaForSequenceClassification(AquilaPreTrainedModel):
|
|
851 |
sequence_lengths = -1
|
852 |
else:
|
853 |
if input_ids is not None:
|
854 |
-
sequence_lengths = (torch.
|
|
|
|
|
855 |
else:
|
856 |
sequence_lengths = -1
|
857 |
|
|
|
93 |
class AquilaRotaryEmbedding(torch.nn.Module):
|
94 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
95 |
super().__init__()
|
96 |
+
|
97 |
+
self.dim = dim
|
98 |
+
self.max_position_embeddings = max_position_embeddings
|
99 |
+
self.base = base
|
100 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
101 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
102 |
|
103 |
# Build here to make `torch.jit.trace` work.
|
104 |
+
self._set_cos_sin_cache(
|
105 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
106 |
+
)
|
107 |
+
|
108 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
109 |
+
self.max_seq_len_cached = seq_len
|
110 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
111 |
+
|
112 |
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
113 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
114 |
emb = torch.cat((freqs, freqs), dim=-1)
|
115 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
116 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
117 |
|
118 |
def forward(self, x, seq_len=None):
|
119 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
|
|
120 |
if seq_len > self.max_seq_len_cached:
|
121 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
122 |
+
|
|
|
|
|
|
|
|
|
|
|
123 |
return (
|
124 |
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
125 |
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
126 |
)
|
127 |
|
128 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Aquila
|
129 |
+
class AquilaLinearScalingRotaryEmbedding(AquilaRotaryEmbedding):
|
130 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
131 |
+
|
132 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
133 |
+
self.scaling_factor = scaling_factor
|
134 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
135 |
+
|
136 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
137 |
+
self.max_seq_len_cached = seq_len
|
138 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
139 |
+
t = t / self.scaling_factor
|
140 |
+
|
141 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
142 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
143 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
144 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
145 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
146 |
+
|
147 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Aquila
|
148 |
+
class AquilaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
149 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
150 |
+
|
151 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
152 |
+
self.scaling_factor = scaling_factor
|
153 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
154 |
+
|
155 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
156 |
+
self.max_seq_len_cached = seq_len
|
157 |
+
|
158 |
+
if seq_len > self.max_position_embeddings:
|
159 |
+
base = self.base * (
|
160 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
161 |
+
) ** (self.dim / (self.dim - 2))
|
162 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
163 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
164 |
+
|
165 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
166 |
+
|
167 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
168 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
169 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
170 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
171 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
172 |
+
|
173 |
|
174 |
def rotate_half(x):
|
175 |
"""Rotates half the hidden dims of the input."""
|
|
|
191 |
|
192 |
# Copied from transformers.models.llama.modeling_llama.LlamaMLP with Llama->Aquila
|
193 |
class AquilaMLP(nn.Module):
|
194 |
+
def __init__(self, config):
|
|
|
|
|
|
|
|
|
|
|
195 |
super().__init__()
|
196 |
+
self.config = config
|
197 |
+
self.hidden_size = config.hidden_size
|
198 |
+
self.intermediate_size = config.intermediate_size
|
199 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
200 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
201 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
202 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
203 |
|
204 |
def forward(self, x):
|
205 |
+
if self.config.pretraining_tp > 1:
|
206 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
207 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
208 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
209 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
210 |
+
|
211 |
+
gate_proj = torch.cat(
|
212 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
213 |
+
)
|
214 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
215 |
+
|
216 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
217 |
+
down_proj = [
|
218 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
219 |
+
]
|
220 |
+
down_proj = sum(down_proj)
|
221 |
+
else:
|
222 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
223 |
+
|
224 |
+
return down_proj
|
225 |
+
|
226 |
+
|
227 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
228 |
+
"""
|
229 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
230 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
231 |
+
"""
|
232 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
233 |
+
if n_rep == 1:
|
234 |
+
return hidden_states
|
235 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
236 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
237 |
|
238 |
|
239 |
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->Aquila
|
240 |
class AquilaAttention(nn.Module):
|
241 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
242 |
def __init__(self, config: AquilaConfig):
|
243 |
super().__init__()
|
244 |
self.config = config
|
245 |
self.hidden_size = config.hidden_size
|
246 |
self.num_heads = config.num_attention_heads
|
247 |
self.head_dim = self.hidden_size // self.num_heads
|
248 |
+
self.num_key_value_heads = config.num_key_value_heads
|
249 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
250 |
self.max_position_embeddings = config.max_position_embeddings
|
251 |
+
self.rope_theta = config.rope_theta
|
252 |
|
253 |
if (self.head_dim * self.num_heads) != self.hidden_size:
|
254 |
raise ValueError(
|
|
|
256 |
f" and `num_heads`: {self.num_heads})."
|
257 |
)
|
258 |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
259 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
260 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
261 |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
262 |
+
self._init_rope()
|
263 |
+
|
264 |
+
def _init_rope(self):
|
265 |
+
if self.config.rope_scaling is None:
|
266 |
+
self.rotary_emb = AquilaRotaryEmbedding(
|
267 |
+
self.head_dim,
|
268 |
+
max_position_embeddings=self.max_position_embeddings,
|
269 |
+
base=self.rope_theta,
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
scaling_type = self.config.rope_scaling["type"]
|
273 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
274 |
+
if scaling_type == "linear":
|
275 |
+
self.rotary_emb = AquilaLinearScalingRotaryEmbedding(
|
276 |
+
self.head_dim,
|
277 |
+
max_position_embeddings=self.max_position_embeddings,
|
278 |
+
scaling_factor=scaling_factor,
|
279 |
+
base=self.rope_theta,
|
280 |
+
)
|
281 |
+
elif scaling_type == "dynamic":
|
282 |
+
self.rotary_emb = AquilaDynamicNTKScalingRotaryEmbedding(
|
283 |
+
self.head_dim,
|
284 |
+
max_position_embeddings=self.max_position_embeddings,
|
285 |
+
scaling_factor=scaling_factor,
|
286 |
+
base=self.rope_theta,
|
287 |
+
)
|
288 |
+
else:
|
289 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
290 |
|
291 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
292 |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
|
|
302 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
303 |
bsz, q_len, _ = hidden_states.size()
|
304 |
|
305 |
+
if self.config.pretraining_tp > 1:
|
306 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
307 |
+
query_slices = self.q_proj.weight.split(
|
308 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
309 |
+
)
|
310 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
311 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
312 |
+
|
313 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
314 |
+
query_states = torch.cat(query_states, dim=-1)
|
315 |
+
|
316 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
317 |
+
key_states = torch.cat(key_states, dim=-1)
|
318 |
+
|
319 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
320 |
+
value_states = torch.cat(value_states, dim=-1)
|
321 |
+
|
322 |
+
else:
|
323 |
+
query_states = self.q_proj(hidden_states)
|
324 |
+
key_states = self.k_proj(hidden_states)
|
325 |
+
value_states = self.v_proj(hidden_states)
|
326 |
+
|
327 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
328 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
329 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
330 |
|
331 |
kv_seq_len = key_states.shape[-2]
|
332 |
if past_key_value is not None:
|
333 |
kv_seq_len += past_key_value[0].shape[-2]
|
334 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
335 |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
336 |
|
337 |
if past_key_value is not None:
|
338 |
# reuse k, v, self_attention
|
|
|
341 |
|
342 |
past_key_value = (key_states, value_states) if use_cache else None
|
343 |
|
344 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
345 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
346 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
347 |
+
|
348 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
349 |
|
|
|
350 |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
351 |
raise ValueError(
|
352 |
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
|
|
359 |
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
360 |
)
|
361 |
attn_weights = attn_weights + attention_mask
|
|
|
|
|
|
|
362 |
|
363 |
# upcast attention to fp32
|
364 |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
|
370 |
f" {attn_output.size()}"
|
371 |
)
|
372 |
|
373 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
374 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
375 |
|
376 |
+
if self.config.pretraining_tp > 1:
|
377 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
378 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
379 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
380 |
+
else:
|
381 |
+
attn_output = self.o_proj(attn_output)
|
382 |
|
383 |
if not output_attentions:
|
384 |
attn_weights = None
|
|
|
392 |
super().__init__()
|
393 |
self.hidden_size = config.hidden_size
|
394 |
self.self_attn = AquilaAttention(config=config)
|
395 |
+
self.mlp = AquilaMLP(config)
|
|
|
|
|
|
|
|
|
396 |
self.input_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
397 |
self.post_attention_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
398 |
|
|
|
450 |
|
451 |
return outputs
|
452 |
|
|
|
453 |
AQUILA_START_DOCSTRING = r"""
|
454 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
455 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
|
478 |
supports_gradient_checkpointing = True
|
479 |
_no_split_modules = ["AquilaDecoderLayer"]
|
480 |
_skip_keys_device_placement = "past_key_values"
|
|
|
481 |
|
482 |
def _init_weights(self, module):
|
483 |
std = self.config.initializer_range
|
|
|
697 |
def create_custom_forward(module):
|
698 |
def custom_forward(*inputs):
|
699 |
# None for past_key_value
|
700 |
+
return module(*inputs, past_key_value, output_attentions)
|
701 |
|
702 |
return custom_forward
|
703 |
|
|
|
706 |
hidden_states,
|
707 |
attention_mask,
|
708 |
position_ids,
|
|
|
709 |
)
|
710 |
else:
|
711 |
layer_outputs = decoder_layer(
|
|
|
726 |
all_self_attns += (layer_outputs[1],)
|
727 |
|
728 |
hidden_states = self.norm(hidden_states)
|
729 |
+
|
730 |
# add hidden states from the last decoder layer
|
731 |
if output_hidden_states:
|
732 |
all_hidden_states += (hidden_states,)
|
|
|
741 |
attentions=all_self_attns,
|
742 |
)
|
743 |
|
|
|
744 |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with LLAMA->AQUILA,Llama->Aquila
|
745 |
class AquilaForCausalLM(AquilaPreTrainedModel):
|
746 |
+
_tied_weights_keys = ["lm_head.weight"]
|
747 |
+
|
748 |
def __init__(self, config):
|
749 |
super().__init__(config)
|
750 |
self.model = AquilaModel(config)
|
751 |
+
self.vocab_size = config.vocab_size
|
752 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
753 |
|
754 |
# Initialize weights and apply final processing
|
|
|
833 |
)
|
834 |
|
835 |
hidden_states = outputs[0]
|
836 |
+
if self.config.pretraining_tp > 1:
|
837 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
838 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
839 |
+
logits = torch.cat(logits, dim=-1)
|
840 |
+
else:
|
841 |
+
logits = self.lm_head(hidden_states)
|
842 |
+
logits = logits.float()
|
843 |
|
844 |
loss = None
|
845 |
if labels is not None:
|
|
|
900 |
def _reorder_cache(past_key_values, beam_idx):
|
901 |
reordered_past = ()
|
902 |
for layer_past in past_key_values:
|
903 |
+
reordered_past += (
|
904 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
905 |
+
)
|
906 |
return reordered_past
|
907 |
|
|
|
908 |
@add_start_docstrings(
|
909 |
"""
|
910 |
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
|
|
986 |
sequence_lengths = -1
|
987 |
else:
|
988 |
if input_ids is not None:
|
989 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
|
990 |
+
logits.device
|
991 |
+
)
|
992 |
else:
|
993 |
sequence_lengths = -1
|
994 |
|