Update README.md
Browse files
README.md
CHANGED
@@ -9,19 +9,10 @@ Aquila语言大模型在技术上继承了GPT-3、LLaMA等的架构设计优点
|
|
9 |
|
10 |
The Aquila language model inherits the architectural design advantages of GPT-3 and LLaMA, replacing a batch of more efficient underlying operator implementations and redesigning the tokenizer for Chinese-English bilingual support. It upgrades the BMTrain parallel training method, achieving nearly 8 times the training efficiency of Magtron+DeepSpeed ZeRO-2 in the training process of Aquila. The Aquila language model is trained from scratch on high-quality Chinese and English corpora. Through data quality control and various training optimization methods, it achieves better performance than other open-source models with smaller datasets and shorter training times. It is also the first large-scale open-source language model that supports Chinese-English-Knowledge, commercial licensing, and complies with domestic data regulations.
|
11 |
|
12 |
-
AquilaChat-7B是在Aquila-7B模型的基础上,进行SFT微调后的支持中英双语的对话式语言模型。AquilaChat-7B
|
13 |
|
14 |
-
AquilaChat-7B is a conversational language model that supports Chinese-English dialogue. It is based on the Aquila-7B model and fine-tuned using SFT. AquilaChat-7B model was developed by Beijing Academy of Artificial Intelligence.
|
15 |
|
16 |
-
| 名称/Name | MMLU_Chinese_EM | CLUE-EM |MMLU-EM| BoolQ-EM| TruthfulQA-EM |IMDB-EM| RAFT-EM|
|
17 |
-
| ----- | ---- | ----- | ---- | ----- | ---- | ----- | ----- |
|
18 |
-
| [AcuilaChat-7B](https://model.baai.ac.cn/model-detail/xxxxx) | 0.292 | 0.385|0.269 | 0.731|0.347 |0.939| 0.443|
|
19 |
-
| [BiLLa-7B-LLM](https://model.baai.ac.cn/model-detail/xxxxx) | 0.279 | 0.374|0.257 | 0.76|0.205 |0.864| 0.514|
|
20 |
-
| [Ziya-LLaMA-13B-v1](https://model.baai.ac.cn/model-detail/xxxxx) | 0.273 | 0.404|0.406 | 0.786|0.284 |0.762| 0.191|
|
21 |
-
|
22 |
-
您可以在[FlagEval基础模型评测平台](https://flageval.baai.ac.cn/#/home) 查看更多评测指标
|
23 |
-
|
24 |
-
You can view [FlagEval Model Evaluation Platform](https://flageval.baai.ac.cn/#/home) for more details
|
25 |
|
26 |
|
27 |
|
|
|
9 |
|
10 |
The Aquila language model inherits the architectural design advantages of GPT-3 and LLaMA, replacing a batch of more efficient underlying operator implementations and redesigning the tokenizer for Chinese-English bilingual support. It upgrades the BMTrain parallel training method, achieving nearly 8 times the training efficiency of Magtron+DeepSpeed ZeRO-2 in the training process of Aquila. The Aquila language model is trained from scratch on high-quality Chinese and English corpora. Through data quality control and various training optimization methods, it achieves better performance than other open-source models with smaller datasets and shorter training times. It is also the first large-scale open-source language model that supports Chinese-English-Knowledge, commercial licensing, and complies with domestic data regulations.
|
11 |
|
12 |
+
AquilaChat-7B是在Aquila-7B模型的基础上,进行SFT微调后的支持中英双语的对话式语言模型。AquilaChat-7B模型由智源研究院研发
|
13 |
|
14 |
+
AquilaChat-7B is a conversational language model that supports Chinese-English dialogue. It is based on the Aquila-7B model and fine-tuned using SFT. AquilaChat-7B model was developed by Beijing Academy of Artificial Intelligence.
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
|
18 |
|