BAAI
/

hyxmmm commited on
Commit
8163d0d
·
verified ·
1 Parent(s): b1a194e

Upload configuration_aquiladense.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. configuration_aquiladense.py +173 -0
configuration_aquiladense.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copied from transformers.models.llama.configuration_llama
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ AquilaDense model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ class AquilaDenseConfig(PretrainedConfig):
29
+ r"""
30
+ Args:
31
+ vocab_size (`int`, *optional*, defaults to 151851):
32
+ Vocabulary size of the model. Defines the number of different tokens that can be represented by the
33
+ `inputs_ids` passed when calling [`AquilaDenseModel`]
34
+ hidden_size (`int`, *optional*, defaults to 4096):
35
+ Dimension of the hidden representations.
36
+ intermediate_size (`int`, *optional*, defaults to 11008):
37
+ Dimension of the MLP representations.
38
+ num_hidden_layers (`int`, *optional*, defaults to 32):
39
+ Number of hidden layers in the Transformer decoder.
40
+ num_attention_heads (`int`, *optional*, defaults to 32):
41
+ Number of attention heads for each attention layer in the Transformer decoder.
42
+ num_key_value_heads (`int`, *optional*):
43
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
44
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
45
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
46
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
47
+ by meanpooling all the original heads within that group. For more details checkout [this
48
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
49
+ `num_attention_heads`.
50
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
51
+ The non-linear activation function (function or string) in the decoder.
52
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
53
+ The maximum sequence length that this model might ever be used with. AquilaDense 1 supports up to 2048 tokens,
54
+ AquilaDense 2 up to 4096, CodeAquilaDense up to 16384.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
58
+ The epsilon used by the rms normalization layers.
59
+ use_cache (`bool`, *optional*, defaults to `True`):
60
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
61
+ relevant if `config.is_decoder=True`.
62
+ pad_token_id (`int`, *optional*):
63
+ Padding token id.
64
+ bos_token_id (`int`, *optional*, defaults to 1):
65
+ Beginning of stream token id.
66
+ eos_token_id (`int`, *optional*, defaults to 2):
67
+ End of stream token id.
68
+ pretraining_tp (`int`, *optional*, defaults to 1):
69
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
70
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
71
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
72
+ issue](https://github.com/pytorch/pytorch/issues/76232).
73
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
74
+ Whether to tie weight embeddings
75
+ rope_theta (`float`, *optional*, defaults to 10000.0):
76
+ The base period of the RoPE embeddings.
77
+ rope_scaling (`Dict`, *optional*):
78
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
79
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
80
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
81
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
82
+ these scaling strategies behave:
83
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
84
+ experimental feature, subject to breaking API changes in future versions.
85
+ attention_dropout (`float`, *optional*, defaults to 0.0):
86
+ The dropout ratio for the attention probabilities.
87
+
88
+ ```python
89
+ >>> from transformers import AquilaDenseModel, AquilaDenseConfig
90
+
91
+ >>> configuration = AquilaDenseConfig()
92
+
93
+ >>> model = AquilaDenseModel(configuration)
94
+
95
+ >>> configuration = model.config
96
+ ```"""
97
+
98
+ model_type = "aquiladense"
99
+ keys_to_ignore_at_inference = ["past_key_values"]
100
+
101
+ def __init__(
102
+ self,
103
+ vocab_size=32000,
104
+ hidden_size=4096,
105
+ intermediate_size=11008,
106
+ num_hidden_layers=32,
107
+ num_attention_heads=32,
108
+ num_key_value_heads=None,
109
+ hidden_act="silu",
110
+ max_position_embeddings=2048,
111
+ initializer_range=0.02,
112
+ rms_norm_eps=1e-6,
113
+ use_cache=True,
114
+ pad_token_id=None,
115
+ bos_token_id=1,
116
+ eos_token_id=2,
117
+ pretraining_tp=1,
118
+ tie_word_embeddings=False,
119
+ rope_theta=10000.0,
120
+ rope_scaling=None,
121
+ attention_dropout=0.0,
122
+ **kwargs,
123
+ ):
124
+ self.vocab_size = vocab_size
125
+ self.max_position_embeddings = max_position_embeddings
126
+ self.hidden_size = hidden_size
127
+ self.intermediate_size = intermediate_size
128
+ self.num_hidden_layers = num_hidden_layers
129
+ self.num_attention_heads = num_attention_heads
130
+
131
+ # for backward compatibility
132
+ if num_key_value_heads is None:
133
+ num_key_value_heads = num_attention_heads
134
+
135
+ self.num_key_value_heads = num_key_value_heads
136
+ self.hidden_act = hidden_act
137
+ self.initializer_range = initializer_range
138
+ self.rms_norm_eps = rms_norm_eps
139
+ self.pretraining_tp = pretraining_tp
140
+ self.use_cache = use_cache
141
+ self.rope_theta = rope_theta
142
+ self.rope_scaling = rope_scaling
143
+ self._rope_scaling_validation()
144
+ self.attention_dropout = attention_dropout
145
+
146
+ super().__init__(
147
+ pad_token_id=pad_token_id,
148
+ bos_token_id=bos_token_id,
149
+ eos_token_id=eos_token_id,
150
+ tie_word_embeddings=tie_word_embeddings,
151
+ **kwargs,
152
+ )
153
+
154
+ def _rope_scaling_validation(self):
155
+ """
156
+ Validate the `rope_scaling` configuration.
157
+ """
158
+ if self.rope_scaling is None:
159
+ return
160
+
161
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
162
+ raise ValueError(
163
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
164
+ f"got {self.rope_scaling}"
165
+ )
166
+ rope_scaling_type = self.rope_scaling.get("type", None)
167
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
168
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
169
+ raise ValueError(
170
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
171
+ )
172
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
173
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")