File size: 16,011 Bytes
905d060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import logging
import transformers
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, AutoModel
import torch
from PIL import Image
import requests
from typing import List, Optional, Tuple, Union
from transformers.cache_utils import Cache
from transformers.models.llava_next.modeling_llava_next import image_size_to_num_patches

logger = logging.getLogger(__name__)


def my_mistral_forward(
    self,
    input_ids: torch.LongTensor = None,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
    inputs_embeds: Optional[torch.FloatTensor] = None,
    labels: Optional[torch.LongTensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
    cache_position: Optional[torch.LongTensor] = None,
    num_logits_to_keep: int = 0,
):
    r"""
    Args:
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        num_logits_to_keep (`int`, *optional*):
            Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
            `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
            token can save memory, which becomes pretty significant for long sequences or large vocabulary size.

    Returns:

    Example:

    ```python
    >>> from transformers import AutoTokenizer, MistralForCausalLM

    >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
    >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")

    >>> prompt = "Hey, are you conscious? Can you talk to me?"
    >>> inputs = tokenizer(prompt, return_tensors="pt")

    >>> # Generate
    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
    ```"""

    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
    outputs = self.model(
        input_ids=input_ids,
        attention_mask=attention_mask,
        position_ids=position_ids,
        past_key_values=past_key_values,
        inputs_embeds=inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
        cache_position=cache_position,
    )

    hidden_states = outputs[0]
    
    return hidden_states


def transfer_mistral_forward():
    transformers.models.mistral.MistralForCausalLM.forward = my_mistral_forward

class LLaVANextForEmbedding(LlavaNextForConditionalGeneration):
    def __init__(self, config):
        super().__init__(config)
        
        transfer_mistral_forward()
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        pixel_values: torch.FloatTensor = None,
        image_sizes: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        vision_feature_layer: Optional[int] = None,
        vision_feature_select_strategy: Optional[str] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        num_logits_to_keep: int = 0,
    ):

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        vision_feature_layer = (
            vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
        )
        vision_feature_select_strategy = (
            vision_feature_select_strategy
            if vision_feature_select_strategy is not None
            else self.config.vision_feature_select_strategy
        )

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
            )

        if pixel_values is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
            )

        legacy_processing = False
        if inputs_embeds is None:
            inputs_embeds = self.get_input_embeddings()(input_ids)

            # if the number of image tokens is more than image embeddings seq length, then prob we expanded it in processing
            # not very reliable, but we don't expect one to actually pass 500+ images for one prompt
            # In case we're in decoding stage, legacy behavior is checked by presence of pixel values even if use_cache=True
            legacy_processing = (
                (input_ids == self.config.image_token_index).sum(1).max() < self.config.image_seq_length
            ) or (input_ids.shape[-1] == 1 and pixel_values is not None)

        if pixel_values is not None and pixel_values.size(0) > 0:
            # ! infer image_num_patches from image_sizes
            image_num_patches = [
                image_size_to_num_patches(
                    image_size=imsize,
                    grid_pinpoints=self.config.image_grid_pinpoints,
                    patch_size=self.config.vision_config.image_size,
                )
                for imsize in image_sizes
            ]
            # figure out if pixel_values is concatenated or stacked
            if pixel_values.dim() == 5:
                # stacking when input is (batch_size, num_patches, num_channels, height, width)
                _pixel_values_list = [
                    pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)
                ]
                pixel_values = torch.cat(_pixel_values_list, dim=0)
            elif pixel_values.dim() != 4:
                # otherwise has to be stacked from list of (num_patches, num_channels, height, width)
                raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")

            image_features = self.vision_tower(pixel_values, output_hidden_states=True)
            selected_image_feature = image_features.hidden_states[vision_feature_layer]
            if vision_feature_select_strategy == "default":
                selected_image_feature = selected_image_feature[:, 1:]
            elif vision_feature_select_strategy == "full":
                selected_image_feature = selected_image_feature
            image_features = self.multi_modal_projector(selected_image_feature)
            image_features = torch.split(image_features, image_num_patches, dim=0)

            # NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
            image_features, feature_lens = self.pack_image_features(
                image_features,
                image_sizes,
                vision_feature_select_strategy=vision_feature_select_strategy,
                image_newline=self.image_newline,
            )
            if legacy_processing:
                logger.warning_once(
                    "Expanding inputs for image tokens in LLaVa-NeXT should be done in processing. "
                    "Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly "
                    "with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. "
                    "Using processors without these attributes in the config is deprecated and will throw an error in v4.47."
                )
                if input_ids.shape[1] != 1:
                    inputs_embeds = inputs_embeds.to(image_features.dtype)
                    inputs_embeds, attention_mask, position_ids, labels, _ = self._merge_input_ids_with_image_features(
                        image_features,
                        feature_lens,
                        inputs_embeds,
                        input_ids,
                        attention_mask,
                        position_ids,
                        labels=labels,
                    )
                    cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)
                else:
                    # Retrieve the first layer to inspect the logits and mask out the hidden states
                    # that are set to 0
                    first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]

                    # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
                    batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)

                    # Get the target length
                    target_length = input_ids.shape[1]
                    past_length = first_layer_past_key_value.shape[-1]

                    extended_attention_mask = torch.ones(
                        (attention_mask.shape[0], past_length),
                        dtype=attention_mask.dtype,
                        device=attention_mask.device,
                    )

                    # Filter out only the tokens that can be un-attended, this can happen
                    # if one uses Llava + Fused modules where the cache on the
                    # first iteration is already big enough, or if one passes custom cache
                    valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
                    new_batch_index = batch_index[valid_indices]
                    new_non_attended_tokens = non_attended_tokens[valid_indices]

                    # Zero-out the places where we don't need to attend
                    extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
                    attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
                    position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
                    cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)[
                        -target_length:
                    ]

            # TODO: @raushan retain only the new behavior after v4.47
            else:
                special_image_mask = (
                    (input_ids == self.config.image_token_index).unsqueeze(-1).expand_as(inputs_embeds)
                )
                image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
                inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)

        outputs = self.language_model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
            num_logits_to_keep=num_logits_to_keep,
        )

        return outputs

    def set_processor(self, model_name):
        self.processor = LlavaNextProcessor.from_pretrained(model_name)
    def prepare_text_input(self, image=None, text=None, q_or_c=None, task_instruction=None):
        task_instruction_example_cir = "Retrieve the target image that best meets the combined criteria by using both the provided image and the image retrieval instructions: "
        
        assert q_or_c in ["query", "candidate", "q", "c"]
        
        if "q" in q_or_c:
            if task_instruction is None:
                text_input = "[INST] \n <instruct>  <query>"
                print(f"""
                        Warning: For optimal performance, MMRet-MLLM requires the task instruction to be specified in the query.
                        For example, for the composed image retrieval task, you might use a specific instruction like: {task_instruction_example_cir}.
                        Instructions for other tasks can be referenced in the MMEB benchmark.
                    """)
            elif task_instruction is not None:
                text_input = f"[INST] \n <instruct> {task_instruction} <query> "
            
            if text is not None:
                text_input = f"{text_input} {text} \n"
            if image is not None:
                text_input = f"{text_input} <image>"

            text_input = f"{text_input} [/INST]"
        else:
            text_input = "[INST] "
            if text is not None:
                text_input = f"{text_input} {text} \n"
            if image is not None:
                text_input = f"{text_input} <image>"
            text_input = f"{text_input} [/INST]"
        
        return text_input

    def data_process(self, images=None, text=None, q_or_c=None, task_instruction=None):
        if images is not None:
            _is_list = isinstance(images, list)
        elif text is not None:
            _is_list = isinstance(text, list)
        else:
            raise ValueError("images and text cannot be both None.")
        
        assert q_or_c in ["query", "candidate", "q", "c"]

        if not _is_list :
            text_input = self.prepare_text_input(images, text, q_or_c, task_instruction)
            text_input = [text_input]
            

            if images is not None:
                images = Image.open(images).resize((512,512)).convert("RGB")
                images = [images]
                inputs = self.processor(images=images, text=text_input, return_tensors="pt", padding=True)
            else:
                inputs = self.processor(text=text_input, return_tensors="pt", padding=True)

        else:
            if text is None:
                text = [None] * len(images)
            text_input = [self.prepare_text_input(_image, _text, q_or_c, task_instruction) for _image, _text in zip(images, text)]
            
            if images is not None:
                images = [Image.open(_image).resize((512,512)).convert("RGB") for _image in images]
                inputs = self.processor(images=images, text=text_input, return_tensors="pt", padding=True)
            else:
                inputs = self.processor(text=text_input, return_tensors="pt", padding=True)
        
        inputs = inputs.to(self.device)

        return inputs