BAAI
/

YufengCui commited on
Commit
d1e3547
·
verified ·
1 Parent(s): 2394884

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +125 -3
README.md CHANGED
@@ -1,3 +1,125 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: any-to-any
3
+ license: apache-2.0
4
+ library_name: transformers
5
+ ---
6
+
7
+ <div align='center'>
8
+ <h1>Emu3: Next-Token Prediction is All You Need</h1h1>
9
+ <h3></h3>
10
+
11
+ [Emu3 Team, BAAI](https://www.baai.ac.cn/english.html)
12
+
13
+ | [Project Page](https://emu.baai.ac.cn) | [Paper](https://huggingface.co/papers/2409.18869) | [🤗HF Models](https://huggingface.co/collections/BAAI/emu3-66f4e64f70850ff358a2e60f) | [github](https://github.com/baaivision/Emu3)
14
+ | [Demo](https://huggingface.co/spaces/BAAI/Emu3) |
15
+
16
+
17
+ </div>
18
+
19
+ <div align='center'>
20
+ <img src="https://github.com/baaivision/Emu3/blob/main/assets/arch.png?raw=True" class="interpolation-image" alt="arch." height="80%" width="70%" />
21
+ </div>
22
+
23
+ We introduce **Emu3**, a new suite of state-of-the-art multimodal models trained solely with **<i>next-token prediction</i>**! By tokenizing images, text, and videos into a discrete space, we train a single transformer from scratch on a mixture of multimodal sequences.
24
+
25
+ ### Emu3 excels in both generation and perception
26
+ **Emu3** outperforms several well-established task-specific models in both generation and perception tasks, surpassing flagship open models such as SDXL, LLaVA-1.6 and OpenSora-1.2, while eliminating the need for diffusion or compositional architectures.
27
+
28
+ <div align='center'>
29
+ <img src="https://github.com/baaivision/Emu3/blob/main/assets/comparison.png?raw=True" class="interpolation-image" alt="comparison." height="80%" width="80%" />
30
+ </div>
31
+
32
+ ### Highlights
33
+
34
+ - **Emu3** is capable of generating high-quality images following the text input, by simply predicting the next vision token. The model naturally supports flexible resolutions and styles.
35
+ - **Emu3** shows strong vision-language understanding capabilities to see the physical world and provides coherent text responses. Notably, this capability is achieved without depending on a CLIP and a pretrained LLM.
36
+ - **Emu3** simply generates a video causally by predicting the next token in a video sequence, unlike the video diffusion model as in Sora. With a video in context, Emu3 can also naturally extend the video and predict what will happen next.
37
+
38
+
39
+
40
+ #### Quickstart
41
+
42
+ ```python
43
+ from PIL import Image
44
+ from transformers import AutoTokenizer, AutoModel, AutoImageProcessor, AutoModelForCausalLM
45
+ from transformers.generation.configuration_utils import GenerationConfig
46
+ from transformers.generation import LogitsProcessorList, PrefixConstrainedLogitsProcessor, UnbatchedClassifierFreeGuidanceLogitsProcessor
47
+ import torch
48
+
49
+ import sys
50
+ sys.path.append(PATH_TO_BAAI_Emu3-Gen_MODEL)
51
+ from processing_emu3 import Emu3Processor
52
+
53
+ # model path
54
+ EMU_HUB = "BAAI/Emu3-Gen"
55
+ VQ_HUB = "BAAI/Emu3-VisionTokenizer"
56
+
57
+ # prepare model and processor
58
+ model = AutoModelForCausalLM.from_pretrained(
59
+ EMU_HUB,
60
+ device_map="cuda:0",
61
+ torch_dtype=torch.bfloat16,
62
+ attn_implementation="flash_attention_2",
63
+ trust_remote_code=True,
64
+ )
65
+
66
+ tokenizer = AutoTokenizer.from_pretrained(EMU_HUB, trust_remote_code=True)
67
+ image_processor = AutoImageProcessor.from_pretrained(VQ_HUB, trust_remote_code=True)
68
+ image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval()
69
+ processor = Emu3Processor(image_processor, image_tokenizer, tokenizer)
70
+
71
+ # prepare input
72
+ POSITIVE_PROMPT = " masterpiece, film grained, best quality."
73
+ NEGATIVE_PROMPT = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry."
74
+
75
+ classifier_free_guidance = 3.0
76
+ prompt = "a portrait of young girl."
77
+ prompt += POSITIVE_PROMPT
78
+
79
+ kwargs = dict(
80
+ mode='G',
81
+ ratio="1:1",
82
+ image_area=model.config.image_area,
83
+ return_tensors="pt",
84
+ )
85
+ pos_inputs = processor(text=prompt, **kwargs)
86
+ neg_inputs = processor(text=NEGATIVE_PROMPT, **kwargs)
87
+
88
+ # prepare hyper parameters
89
+ GENERATION_CONFIG = GenerationConfig(
90
+ use_cache=True,
91
+ eos_token_id=model.config.eos_token_id,
92
+ pad_token_id=model.config.pad_token_id,
93
+ max_new_tokens=40960,
94
+ do_sample=True,
95
+ top_k=2048,
96
+ )
97
+
98
+ h, w = pos_inputs.image_size[0]
99
+ constrained_fn = processor.build_prefix_constrained_fn(h, w)
100
+ logits_processor = LogitsProcessorList([
101
+ UnbatchedClassifierFreeGuidanceLogitsProcessor(
102
+ classifier_free_guidance,
103
+ model,
104
+ unconditional_ids=neg_inputs.input_ids.to("cuda:0"),
105
+ ),
106
+ PrefixConstrainedLogitsProcessor(
107
+ constrained_fn ,
108
+ num_beams=1,
109
+ ),
110
+ ])
111
+
112
+ # generate
113
+ outputs = model.generate(
114
+ pos_inputs.input_ids.to("cuda:0"),
115
+ GENERATION_CONFIG,
116
+ logits_processor=logits_processor
117
+ )
118
+
119
+ mm_list = processor.decode(outputs[0])
120
+ for idx, im in enumerate(mm_list):
121
+ if not isinstance(im, Image.Image):
122
+ continue
123
+ im.save(f"result_{idx}.png")
124
+
125
+ ```