File size: 2,403 Bytes
d137d5b 42fbb33 c6f91f4 42fbb33 c6f91f4 42fbb33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
license: mit
---
<div align="center">
<h1>SegGPT: Segmenting Everything In Context </h1>
[Xinlong Wang](https://www.xloong.wang/)<sup>1*</sup>, [Xiaosong Zhang](https://scholar.google.com/citations?user=98exn6wAAAAJ&hl=en)<sup>1*</sup>, [Yue Cao](http://yue-cao.me/)<sup>1*</sup>, [Wen Wang](https://scholar.google.com/citations?user=1ks0R04AAAAJ&hl)<sup>2</sup>, [Chunhua Shen](https://cshen.github.io/)<sup>2</sup>, [Tiejun Huang](https://scholar.google.com/citations?user=knvEK4AAAAAJ&hl=en)<sup>1,3</sup>
<sup>1</sup>[BAAI](https://www.baai.ac.cn/english.html), <sup>2</sup>[ZJU](https://www.zju.edu.cn/english/), <sup>3</sup>[PKU](https://english.pku.edu.cn/)
Enjoy the [Demo](https://huggingface.co/spaces/BAAI/SegGPT) and [Code](https://github.com/baaivision/Painter/edit/main/SegGPT)
<br>
![teaser](./seggpt_teaser.png)
</div>
We present SegGPT, a generalist model for segmenting everything in context. With only one single model, SegGPT can perform arbitrary segmentation tasks in images or videos via in-context inference, such as object instance, stuff, part, contour, and text.
SegGPT is evaluated on a broad range of tasks, including few-shot semantic segmentation, video object segmentation, semantic segmentation, and panoptic segmentation.
Our results show strong capabilities in segmenting in-domain and out-of-domain targets, either qualitatively or quantitatively.
[[Paper]](https://arxiv.org/abs/2304.03284)
[[Code]](https://github.com/baaivision/Painter/edit/main/SegGPT)
[[Demo]](https://huggingface.co/spaces/BAAI/SegGPT)
## **Model**
A pre-trained SegGPT model is available at [🤗 HF link](https://huggingface.co/BAAI/SegGPT/blob/main/seggpt_vit_large.pth).
## Citation
```
@article{SegGPT,
title={SegGPT: Segmenting Everything In Context},
author={Wang, Xinlong and Zhang, Xiaosong and Cao, Yue and Wang, Wen and Shen, Chunhua and Huang, Tiejun},
journal={arXiv preprint arXiv:2304.03284},
year={2023}
}
```
## Contact
**We are hiring** at all levels at BAAI Vision Team, including full-time researchers, engineers and interns.
If you are interested in working with us on **foundation model, visual perception and multimodal learning**, please contact [Xinlong Wang](https://www.xloong.wang/) (`[email protected]`) and [Yue Cao](http://yue-cao.me/) (`[email protected]`).
|