Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +203 -0
- added_tokens.json +26 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +345 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +20 -0
- tokenizer.json +3 -0
- tokenizer_config.json +220 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1536,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": true,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- transformers
|
10 |
+
pipeline_tag: sentence-similarity
|
11 |
+
library_name: sentence-transformers
|
12 |
+
license: apache-2.0
|
13 |
+
---
|
14 |
+
|
15 |
+
<h1 align="center">FlagEmbedding</h1>
|
16 |
+
|
17 |
+
For more details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
18 |
+
|
19 |
+
**BGE-Code-v1** is an LLM-based code embedding model that supports code retrieval, text retrieval, and multilingual retrieval. It primarily demonstrates the following capabilities:
|
20 |
+
- Superior Code Retrieval Performance: The model demonstrates exceptional code retrieval capabilities, supporting natural language queries in both English and Chinese, as well as 20 programming languages.
|
21 |
+
- Robust Text Retrieval Capabilities: The model maintains strong text retrieval capabilities comparable to text embedding models of similar scale.
|
22 |
+
- Extensive Multilingual Support: BGE-Code-v1 offers comprehensive multilingual retrieval capabilities, excelling in languages such as English, Chinese, Japanese, French, and more.
|
23 |
+
|
24 |
+
## Usage
|
25 |
+
|
26 |
+
### Using FlagEmbedding
|
27 |
+
|
28 |
+
```
|
29 |
+
git clone https://github.com/FlagOpen/FlagEmbedding.git
|
30 |
+
cd FlagEmbedding
|
31 |
+
pip install -e .
|
32 |
+
```
|
33 |
+
|
34 |
+
```python
|
35 |
+
from FlagEmbedding import FlagLLMModel
|
36 |
+
queries = [
|
37 |
+
"Delete the record with ID 4 from the 'Staff' table.",
|
38 |
+
'Delete all records in the "Livestock" table where age is greater than 5'
|
39 |
+
]
|
40 |
+
documents = [
|
41 |
+
"DELETE FROM Staff WHERE StaffID = 4;",
|
42 |
+
"DELETE FROM Livestock WHERE age > 5;"
|
43 |
+
]
|
44 |
+
model = FlagLLMModel('BAAI/BGE-Code-v1',
|
45 |
+
query_instruction_format="<instruct>{}\n<query>{}",
|
46 |
+
query_instruction_for_retrieval="Given a question in text, retrieve SQL queries that are appropriate responses to the question.",
|
47 |
+
trust_remote_code=True,
|
48 |
+
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
49 |
+
embeddings_1 = model.encode_queries(queries)
|
50 |
+
embeddings_2 = model.encode_corpus(documents)
|
51 |
+
similarity = embeddings_1 @ embeddings_2.T
|
52 |
+
print(similarity)
|
53 |
+
```
|
54 |
+
|
55 |
+
By default, FlagLLMModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
|
56 |
+
|
57 |
+
### Using Sentence Transformers
|
58 |
+
|
59 |
+
```python
|
60 |
+
from sentence_transformers import SentenceTransformer
|
61 |
+
import torch
|
62 |
+
|
63 |
+
# Load the model, optionally in float16 precision for faster inference
|
64 |
+
model = SentenceTransformer("BAAI/bge-code-v1", model_kwargs={"torch_dtype": torch.float16, "trust_remote_code": True}, tokenizer_kwargs={"trust_remote_code": True})
|
65 |
+
|
66 |
+
# Prepare a prompt given an instruction
|
67 |
+
instruction = 'Given a question in text, retrieve SQL queries that are appropriate responses to the question.'
|
68 |
+
prompt = f'<instruct>{instruction}\n<query>'
|
69 |
+
# Prepare queries and documents
|
70 |
+
queries = [
|
71 |
+
"Delete the record with ID 4 from the 'Staff' table.",
|
72 |
+
'Delete all records in the "Livestock" table where age is greater than 5'
|
73 |
+
]
|
74 |
+
documents = [
|
75 |
+
"DELETE FROM Staff WHERE StaffID = 4;",
|
76 |
+
"DELETE FROM Livestock WHERE age > 5;"
|
77 |
+
]
|
78 |
+
|
79 |
+
# Compute the query and document embeddings
|
80 |
+
query_embeddings = model.encode(queries, prompt=prompt)
|
81 |
+
document_embeddings = model.encode(documents)
|
82 |
+
|
83 |
+
# Compute the cosine similarity between the query and document embeddings
|
84 |
+
similarities = model.similarity(query_embeddings, document_embeddings)
|
85 |
+
print(similarities)
|
86 |
+
```
|
87 |
+
|
88 |
+
### Using HuggingFace Transformers
|
89 |
+
|
90 |
+
```python
|
91 |
+
import torch
|
92 |
+
import torch.nn.functional as F
|
93 |
+
|
94 |
+
from torch import Tensor
|
95 |
+
from transformers import AutoTokenizer, AutoModel
|
96 |
+
|
97 |
+
|
98 |
+
def last_token_pool(last_hidden_states: Tensor,
|
99 |
+
attention_mask: Tensor) -> Tensor:
|
100 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
101 |
+
if left_padding:
|
102 |
+
return last_hidden_states[:, -1]
|
103 |
+
else:
|
104 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
105 |
+
batch_size = last_hidden_states.shape[0]
|
106 |
+
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
107 |
+
|
108 |
+
|
109 |
+
def get_detailed_instruct(task_description: str, query: str) -> str:
|
110 |
+
return f'<instruct>{task_description}\n<query>{query}'
|
111 |
+
|
112 |
+
|
113 |
+
instruction = 'Given a question in text, retrieve SQL queries that are appropriate responses to the question.'
|
114 |
+
queries = [
|
115 |
+
"Delete the record with ID 4 from the 'Staff' table.",
|
116 |
+
'Delete all records in the "Livestock" table where age is greater than 5'
|
117 |
+
]
|
118 |
+
documents = [
|
119 |
+
"DELETE FROM Staff WHERE StaffID = 4;",
|
120 |
+
"DELETE FROM Livestock WHERE age > 5;"
|
121 |
+
]
|
122 |
+
input_texts = queries + documents
|
123 |
+
|
124 |
+
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-code-v1', trust_remote_code=True)
|
125 |
+
model = AutoModel.from_pretrained('BAAI/bge-code-v1', trust_remote_code=True)
|
126 |
+
model.eval()
|
127 |
+
|
128 |
+
max_length = 4096
|
129 |
+
# Tokenize the input texts
|
130 |
+
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt', pad_to_multiple_of=8)
|
131 |
+
|
132 |
+
with torch.no_grad():
|
133 |
+
outputs = model(**batch_dict)
|
134 |
+
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
135 |
+
|
136 |
+
# normalize embeddings
|
137 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
138 |
+
scores = (embeddings[:2] @ embeddings[2:].T) * 100
|
139 |
+
print(scores.tolist())
|
140 |
+
```
|
141 |
+
|
142 |
+
## Evaluation
|
143 |
+
|
144 |
+
**BGE-Code-v1** achieves state-of-the-art performance on both the CoIR and CodeRAG benchmarks.
|
145 |
+
|
146 |
+
- CoIR
|
147 |
+
|
148 |
+
| | CodeXEmbed-2B | CodeXEmbed-7B | Voyage-Code-002 | Voyage-Code-003 | BGE-Code-v1 |
|
149 |
+
|---------------------------------------|---------------|---------------|-----------------|-----------------|-----------|
|
150 |
+
| Apps | 76.86 | 85.38 | 26.52 | 93.62 | 98.08 |
|
151 |
+
| CosQA | 40.47 | 42.47 | 29.79 | 34.45 | 46.72 |
|
152 |
+
| Text2SQL | 78.42 | 78.94 | 69.26 | 62.87 | 64.35 |
|
153 |
+
| CSN | 87.87 | 89.67 | 81.79 | 89.35 | 89.53 |
|
154 |
+
| CSN-CCR | 97.66 | 97.95 | 73.45 | 90.05 | 98.30 |
|
155 |
+
| CodeTrans-Contest | 90.30 | 94.45 | 72.77 | 94.96 | 94.38 |
|
156 |
+
| CodeTrans-DL | 38.57 | 40.46 | 27.48 | 38.57 | 46.13 |
|
157 |
+
| StackOverFlow-QA | 94.47 | 96.33 | 67.68 | 97.17 | 95.35 |
|
158 |
+
| CodeFeedBack-ST | 86.36 | 87.53 | 65.35 | 90.67 | 90.56 |
|
159 |
+
| CodeFeedBack-MT | 65.51 | 68.83 | 28.74 | 93.58 | 94.38 |
|
160 |
+
| AVG | 75.65 | 78.20 | 56.26 | 78.53 | 81.77 |
|
161 |
+
|
162 |
+
- CodedRAG
|
163 |
+
|
164 |
+
| | HummanEval | MBPP | DS-1000 | ODEX | RepoEval | SWE-bench-Lite | AVG |
|
165 |
+
| --------------- | ---------- | ---- | ------- | ---- | -------- | -------------- | ---- |
|
166 |
+
| SFR | 100.0 | 99.0 | 19.3 | 37.1 | 83.8 | 62.7 | 67.0 |
|
167 |
+
| Jina-v2-code | 100.0 | 97.7 | 26.2 | 19.9 | 90.5 | 58.3 | 65.4 |
|
168 |
+
| CodeXEmbed-2B | 100.0 | 97.4 | 25.4 | 23.9 | 88.7 | 52.4 | 64.6 |
|
169 |
+
| Voyage-Code-002 | 100.0 | 99.0 | 33.1 | 26.6 | 94.3 | 29.1 | 63.7 |
|
170 |
+
| Voyage-Code-003 | 100.0 | 99.6 | 38.9 | 36.3 | 90.0 | 70.1 | 72.5 |
|
171 |
+
| BGE-Code-v1 | 100.0 | 99.2 | 40.9 | 36.1 | 93.1 | 67.4 | 72.8 |
|
172 |
+
|
173 |
+
## Citation
|
174 |
+
|
175 |
+
If you find this repository useful, please consider giving a star :star: and citation
|
176 |
+
|
177 |
+
```
|
178 |
+
@article{bge-llm,
|
179 |
+
title={Making text embedders few-shot learners},
|
180 |
+
author={Li, Chaofan and Qin, MingHao and Xiao, Shitao and Chen, Jianlyu and Luo, Kun and Shao, Yingxia and Lian, Defu and Liu, Zheng},
|
181 |
+
journal={arXiv preprint arXiv:2409.15700},
|
182 |
+
year={2024}
|
183 |
+
}
|
184 |
+
|
185 |
+
@misc{bge-m3,
|
186 |
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
187 |
+
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
188 |
+
year={2024},
|
189 |
+
eprint={2402.03216},
|
190 |
+
archivePrefix={arXiv},
|
191 |
+
primaryClass={cs.CL}
|
192 |
+
}
|
193 |
+
|
194 |
+
|
195 |
+
@misc{bge_embedding,
|
196 |
+
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
197 |
+
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
|
198 |
+
year={2023},
|
199 |
+
eprint={2309.07597},
|
200 |
+
archivePrefix={arXiv},
|
201 |
+
primaryClass={cs.CL}
|
202 |
+
}
|
203 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<instruct>": 151665,
|
4 |
+
"<query>": 151666,
|
5 |
+
"<tool_call>": 151657,
|
6 |
+
"<|box_end|>": 151649,
|
7 |
+
"<|box_start|>": 151648,
|
8 |
+
"<|endoftext|>": 151643,
|
9 |
+
"<|file_sep|>": 151664,
|
10 |
+
"<|fim_middle|>": 151660,
|
11 |
+
"<|fim_pad|>": 151662,
|
12 |
+
"<|fim_prefix|>": 151659,
|
13 |
+
"<|fim_suffix|>": 151661,
|
14 |
+
"<|im_end|>": 151645,
|
15 |
+
"<|im_start|>": 151644,
|
16 |
+
"<|image_pad|>": 151655,
|
17 |
+
"<|object_ref_end|>": 151647,
|
18 |
+
"<|object_ref_start|>": 151646,
|
19 |
+
"<|quad_end|>": 151651,
|
20 |
+
"<|quad_start|>": 151650,
|
21 |
+
"<|repo_name|>": 151663,
|
22 |
+
"<|video_pad|>": 151656,
|
23 |
+
"<|vision_end|>": 151653,
|
24 |
+
"<|vision_pad|>": 151654,
|
25 |
+
"<|vision_start|>": 151652
|
26 |
+
}
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bge-code-v1",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2Model"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 1536,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 8960,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 2,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": true,
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.49.0",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 151667
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.49.0",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f0012a815833b137559c60485e3d087fb029e034b7b5e5c18fa9cabcc3faafc
|
3 |
+
size 4995016160
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93d0d51780cad746744bed246b4c13e520e458ba36509c33aff1ed0c9ac16d71
|
3 |
+
size 1178224504
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6173204480
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
13 |
+
"layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
16 |
+
"layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
18 |
+
"layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
25 |
+
"layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
28 |
+
"layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
30 |
+
"layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
37 |
+
"layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
40 |
+
"layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
42 |
+
"layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
49 |
+
"layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
52 |
+
"layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
54 |
+
"layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
61 |
+
"layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
64 |
+
"layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
66 |
+
"layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
73 |
+
"layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
76 |
+
"layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
78 |
+
"layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
85 |
+
"layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
88 |
+
"layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
90 |
+
"layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
97 |
+
"layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
100 |
+
"layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
102 |
+
"layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
109 |
+
"layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
112 |
+
"layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
114 |
+
"layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
121 |
+
"layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
124 |
+
"layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
126 |
+
"layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
133 |
+
"layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
136 |
+
"layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
138 |
+
"layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
145 |
+
"layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
148 |
+
"layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
150 |
+
"layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
157 |
+
"layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
160 |
+
"layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
162 |
+
"layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
169 |
+
"layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
172 |
+
"layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
174 |
+
"layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
176 |
+
"layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
181 |
+
"layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
184 |
+
"layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
186 |
+
"layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
193 |
+
"layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
196 |
+
"layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
197 |
+
"layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
198 |
+
"layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
199 |
+
"layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
201 |
+
"layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
202 |
+
"layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
203 |
+
"layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
204 |
+
"layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
205 |
+
"layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
207 |
+
"layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
208 |
+
"layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
209 |
+
"layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
210 |
+
"layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
211 |
+
"layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
212 |
+
"layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
213 |
+
"layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
215 |
+
"layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
216 |
+
"layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
217 |
+
"layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
218 |
+
"layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
219 |
+
"layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
220 |
+
"layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
221 |
+
"layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
222 |
+
"layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
223 |
+
"layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
224 |
+
"layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
225 |
+
"layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
227 |
+
"layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
229 |
+
"layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
230 |
+
"layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
231 |
+
"layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
232 |
+
"layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
233 |
+
"layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
234 |
+
"layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
235 |
+
"layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
239 |
+
"layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
241 |
+
"layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
242 |
+
"layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
243 |
+
"layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
244 |
+
"layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
245 |
+
"layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
246 |
+
"layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
247 |
+
"layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
248 |
+
"layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
249 |
+
"layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
250 |
+
"layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
251 |
+
"layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
252 |
+
"layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
253 |
+
"layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
254 |
+
"layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
255 |
+
"layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
256 |
+
"layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
257 |
+
"layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
258 |
+
"layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
259 |
+
"layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
265 |
+
"layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
268 |
+
"layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
270 |
+
"layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
273 |
+
"layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
275 |
+
"layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
277 |
+
"layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
279 |
+
"layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
280 |
+
"layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
281 |
+
"layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
282 |
+
"layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
283 |
+
"layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
289 |
+
"layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
292 |
+
"layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
294 |
+
"layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
297 |
+
"layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
298 |
+
"layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
299 |
+
"layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
300 |
+
"layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
301 |
+
"layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
302 |
+
"layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
303 |
+
"layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
304 |
+
"layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
305 |
+
"layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
306 |
+
"layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
307 |
+
"layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
308 |
+
"layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
309 |
+
"layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
310 |
+
"layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
311 |
+
"layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
312 |
+
"layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
313 |
+
"layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
314 |
+
"layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
315 |
+
"layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
316 |
+
"layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
317 |
+
"layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
318 |
+
"layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
319 |
+
"layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
320 |
+
"layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
321 |
+
"layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
322 |
+
"layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
323 |
+
"layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
324 |
+
"layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
325 |
+
"layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
326 |
+
"layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
327 |
+
"layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
328 |
+
"layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
329 |
+
"layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
330 |
+
"layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
331 |
+
"layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
332 |
+
"layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
333 |
+
"layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
334 |
+
"layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
335 |
+
"layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
336 |
+
"layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
337 |
+
"layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
338 |
+
"layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
339 |
+
"layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
340 |
+
"layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
341 |
+
"layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
342 |
+
"layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
343 |
+
"norm.weight": "model-00002-of-00002.safetensors"
|
344 |
+
}
|
345 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<instruct>",
|
4 |
+
"<query>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a56524092f5d0676e63537511b535e73e7580a7efe440247ef3fa43d019a0af0
|
3 |
+
size 11422261
|
tokenizer_config.json
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": true,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"151643": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"151644": {
|
15 |
+
"content": "<|im_start|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"151645": {
|
23 |
+
"content": "<|im_end|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"151646": {
|
31 |
+
"content": "<|object_ref_start|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"151647": {
|
39 |
+
"content": "<|object_ref_end|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"151648": {
|
47 |
+
"content": "<|box_start|>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"151649": {
|
55 |
+
"content": "<|box_end|>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": true
|
61 |
+
},
|
62 |
+
"151650": {
|
63 |
+
"content": "<|quad_start|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"151651": {
|
71 |
+
"content": "<|quad_end|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
},
|
78 |
+
"151652": {
|
79 |
+
"content": "<|vision_start|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": true
|
85 |
+
},
|
86 |
+
"151653": {
|
87 |
+
"content": "<|vision_end|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": true
|
93 |
+
},
|
94 |
+
"151654": {
|
95 |
+
"content": "<|vision_pad|>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
},
|
102 |
+
"151655": {
|
103 |
+
"content": "<|image_pad|>",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": false,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": true
|
109 |
+
},
|
110 |
+
"151656": {
|
111 |
+
"content": "<|video_pad|>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": false,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": true
|
117 |
+
},
|
118 |
+
"151657": {
|
119 |
+
"content": "<tool_call>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": false,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": false
|
125 |
+
},
|
126 |
+
"151658": {
|
127 |
+
"content": "</tool_call>",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": false,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"151659": {
|
135 |
+
"content": "<|fim_prefix|>",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": false,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"151660": {
|
143 |
+
"content": "<|fim_middle|>",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": false,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
},
|
150 |
+
"151661": {
|
151 |
+
"content": "<|fim_suffix|>",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": false,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": false
|
157 |
+
},
|
158 |
+
"151662": {
|
159 |
+
"content": "<|fim_pad|>",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": false,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": false
|
165 |
+
},
|
166 |
+
"151663": {
|
167 |
+
"content": "<|repo_name|>",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": false,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": false
|
173 |
+
},
|
174 |
+
"151664": {
|
175 |
+
"content": "<|file_sep|>",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": false,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": false
|
181 |
+
},
|
182 |
+
"151665": {
|
183 |
+
"content": "<instruct>",
|
184 |
+
"lstrip": false,
|
185 |
+
"normalized": false,
|
186 |
+
"rstrip": false,
|
187 |
+
"single_word": false,
|
188 |
+
"special": true
|
189 |
+
},
|
190 |
+
"151666": {
|
191 |
+
"content": "<query>",
|
192 |
+
"lstrip": false,
|
193 |
+
"normalized": false,
|
194 |
+
"rstrip": false,
|
195 |
+
"single_word": false,
|
196 |
+
"special": true
|
197 |
+
}
|
198 |
+
},
|
199 |
+
"additional_special_tokens": [
|
200 |
+
"<instruct>",
|
201 |
+
"<query>"
|
202 |
+
],
|
203 |
+
"auto_map": {
|
204 |
+
"AutoTokenizer": [
|
205 |
+
"/share_2/chaofan/models/CodeR-full--tokenization_qwen.Qwen2Tokenizer",
|
206 |
+
null
|
207 |
+
]
|
208 |
+
},
|
209 |
+
"bos_token": null,
|
210 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
211 |
+
"clean_up_tokenization_spaces": false,
|
212 |
+
"eos_token": "<|endoftext|>",
|
213 |
+
"errors": "replace",
|
214 |
+
"extra_special_tokens": {},
|
215 |
+
"model_max_length": 256,
|
216 |
+
"pad_token": "<|endoftext|>",
|
217 |
+
"split_special_tokens": false,
|
218 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
219 |
+
"unk_token": null
|
220 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|