BAAI
/

ldwang commited on
Commit
5bdd94c
1 Parent(s): 2bc3993
Files changed (1) hide show
  1. README.md +7 -691
README.md CHANGED
@@ -1,696 +1,12 @@
 
 
 
 
 
 
1
 
2
 
3
- <h1 align="center">FlagEmbedding</h1>
4
- <p align="center">
5
- <a href="https://github.com/FlagOpen/FlagEmbedding">
6
- <img alt="Build" src="https://img.shields.io/badge/Contribution-Welcome-blue">
7
- </a>
8
- <a href="https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE">
9
- <img alt="License" src="https://img.shields.io/badge/LICENSE-MIT-green">
10
- </a>
11
- <a href="https://huggingface.co/C-MTEB">
12
- <img alt="Build" src="https://img.shields.io/badge/C_MTEB-🤗-yellow">
13
- </a>
14
- <a href="https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding">
15
- <img alt="Build" src="https://img.shields.io/badge/FlagEmbedding-1.0-red">
16
- </a>
17
- </p>
18
-
19
- <h4 align="center">
20
- <p>
21
- <a href=#model-list>Model List</a> |
22
- <a href=#frequently-asked-questions>FAQ</a> |
23
- <a href=#usage>Usage</a> |
24
- <a href="#evaluation">Evaluation</a> |
25
- <a href="#train">Train</a> |
26
- <a href="#contact">Contact</a> |
27
- <a href="#license">License</a>
28
- <p>
29
- </h4>
30
-
31
-
32
- [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
33
-
34
- FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
35
- And it also can be used in vector database for LLMs.
36
-
37
- ************* 🌟**Updates**🌟 *************
38
- - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [avaliable](https://huggingface.co/spaces/mteb/leaderboard).
39
- - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
40
- - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
41
- - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
42
-
43
-
44
- ## Model List
45
-
46
- `bge` is short for `BAAI general embedding`.
47
-
48
- | Model | Language | Description | query instruction for retrieval\* |
49
- |:-------------------------------|:--------:| :--------:| :--------:|
50
- | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
51
- | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | rank **2nd** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
52
- | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
53
- | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
54
- | [BAAI/bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | Chinese | This model is trained without instruction, and rank **2nd** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | |
55
- | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | a base-scale model but has similar ability with `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
56
- | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
57
-
58
- \*: If you need to search the **long** relevant passages to a **short** query (s2p retrieval task), you need to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** need to be added to passages.
59
-
60
- ## Frequently asked questions
61
-
62
- 1. The similarity score between two dissimilar sentence is higher than 0.5
63
-
64
- The similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
65
- So a similarity score greater than 0.5 does not indicate that the two sentence are similar.
66
-
67
- For downstream tasks, such as passage retrieval or semantic similarity,
68
- **what matters is the relative order of the scores, not the absolute value.**
69
- If you need to filter similar sentences based on a similarity threshold,
70
- please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
71
-
72
-
73
- 2. When do the query instruction need to be used
74
-
75
- For a retrieval task that uses short queries to find long related documents,
76
- it is recommended to add instructions for these short queries.
77
- For other tasks, it is recommended not to add instructions.
78
- For example, in Quora task, which needs to use a short question to search another related short questions,
79
- the instruction is not recommended to add.
80
- The best method to decide whether to add instructions for queries is choosing the setting which can achieve better performance in your task.
81
- In all cases, the documents/passages do not need to add the instruction, only need to consider whether to add the instruction for queries.
82
-
83
-
84
-
85
-
86
- ## Usage
87
-
88
- Here are some examples to use `bge` models with
89
- [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
90
-
91
- #### Using FlagEmbedding
92
- ```
93
- pip install -U FlagEmbedding
94
- ```
95
- If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
96
-
97
- ```python
98
- from FlagEmbedding import FlagModel
99
- sentences_1 = ["样例数据-1", "样例数据-2"]
100
- sentences_2 = ["样例数据-3", "样例数据-4"]
101
- model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
102
- embeddings_1 = model.encode(sentences_1)
103
- embeddings_2 = model.encode(sentences_2)
104
- similarity = embeddings_1 @ embeddings_2.T
105
- print(similarity)
106
-
107
- # for s2p(short query to long passage) retrieval task, please use encode_queries() which will automatically add the instruction to each query
108
- # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
109
- queries = ['query_1', 'query_2']
110
- passages = ["样例文档-1", "样例文档-2"]
111
- q_embeddings = model.encode_queries(queries)
112
- p_embeddings = model.encode(passages)
113
- scores = q_embeddings @ p_embeddings.T
114
- ```
115
- The value of argument `query_instruction_for_retrieval` see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
116
-
117
- FlagModel will use all available GPUs when encoding, please set `os.environ["CUDA_VISIBLE_DEVICES"]` to choose GPU.
118
- You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make GPUs unavailable.
119
-
120
-
121
- #### Using Sentence-Transformers
122
-
123
- Using this model also is easy when you have [sentence-transformers](https://www.SBERT.net) installed:
124
-
125
- ```
126
- pip install -U sentence-transformers
127
- ```
128
- ```python
129
- from sentence_transformers import SentenceTransformer
130
- sentences_1 = ["样例数据-1", "样例数据-2"]
131
- sentences_2 = ["样例数据-3", "样例数据-4"]
132
- model = SentenceTransformer('BAAI/bge-large-zh')
133
- embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
134
- embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
135
- similarity = embeddings_1 @ embeddings_2.T
136
- print(similarity)
137
- ```
138
- For s2p(short query to long passage) retrieval task,
139
- each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
140
- But the instruction is not needed for passages.
141
- ```python
142
- from sentence_transformers import SentenceTransformer
143
- queries = ['query_1', 'query_2']
144
- passages = ["样例文档-1", "样例文档-2"]
145
- instruction = "为这个句子生成表示以用于检索相关文章:"
146
-
147
- model = SentenceTransformer('BAAI/bge-large-zh')
148
- q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
149
- p_embeddings = model.encode(passages, normalize_embeddings=True)
150
- scores = q_embeddings @ p_embeddings.T
151
- ```
152
-
153
- #### Using Langchain
154
-
155
- You can use `bge` in langchain like this:
156
- ```python
157
- from langchain.embeddings import HuggingFaceBgeEmbeddings
158
- model_name = "BAAI/bge-small-en"
159
- model_kwargs = {'device': 'cuda'}
160
- encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
161
- model = HuggingFaceBgeEmbeddings(
162
- model_name=model_name,
163
- model_kwargs=model_kwargs,
164
- encode_kwargs=encode_kwargs,
165
- query_instruction="为这个句子生成表示以用于检索相关文章:"
166
- )
167
- ```
168
-
169
-
170
- #### Using HuggingFace Transformers
171
-
172
- With transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of first token (i.e., [CLS]) as the sentence embedding.
173
-
174
- ```python
175
- from transformers import AutoTokenizer, AutoModel
176
- import torch
177
- # Sentences we want sentence embeddings for
178
- sentences = ["样例数据-1", "样例数据-2"]
179
-
180
- # Load model from HuggingFace Hub
181
- tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
182
- model = AutoModel.from_pretrained('BAAI/bge-large-zh')
183
-
184
- # Tokenize sentences
185
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
186
- # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
187
- # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
188
-
189
- # Compute token embeddings
190
- with torch.no_grad():
191
- model_output = model(**encoded_input)
192
- # Perform pooling. In this case, cls pooling.
193
- sentence_embeddings = model_output[0][:, 0]
194
- # normalize embeddings
195
- sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
196
- print("Sentence embeddings:", sentence_embeddings)
197
- ```
198
-
199
-
200
- ## Evaluation
201
- `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
202
- More details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
203
-
204
- - **MTEB**:
205
-
206
- | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
207
- |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
208
- | [**bge-large-en**](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | **63.98** | **53.9** | **46.98** | 85.8 | **59.48** | 81.56 | 32.06 | **76.21** |
209
- | [**bge-base-en**](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
210
- | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
211
- | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
212
- | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
213
- | [**bge-small-en**](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
214
- | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
215
- | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
216
- | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
217
- | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
218
- | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
219
- | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
220
- | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
221
- | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
222
- | [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 384 | 512 | 56.53 | 42.69 | 41.81 | 82.41 | 58.44 | 79.8 | 27.9 | 63.21 |
223
- | [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 384 | 512 | 56.26 | 41.95 | 42.35 | 82.37 | 58.04 | 78.9 | 30.81 | 63.05 |
224
- | [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 768 | 512 | 56.00 | 41.88 | 41.1 | 82.54 | 53.14 | 76.51 | 30.36 | 66.68 |
225
- | [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 768 | 512 | 55.27 | 33.63 | 40.21 | 85.18 | 53.09 | 81.14 | 31.39 | 69.81 |
226
-
227
-
228
-
229
- - **C-MTEB**:
230
- We create a benchmark C-MTEB for chinese text embedding which consists of 31 datasets from 6 tasks.
231
- Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
232
-
233
- | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
234
- |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
235
- | [**bge-large-zh**](https://huggingface.co/BAAI/bge-large-zh) | 1024 | **64.20** | **71.53** | **53.23** | **78.94** | 72.26 | **65.11** | 48.39 |
236
- | [**bge-large-zh-noinstruct**](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 50.98 | 76.77 | **72.49** | 64.91 | **50.01** |
237
- | [**BAAI/bge-base-zh**](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 52.05 | 77.5 | 70.98 | 64.91 | 47.63 |
238
- | [**BAAI/bge-small-zh**](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 46.87 | 70.35 | 67.78 | 61.48 | 45.09 |
239
- | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 |56.91 | 48.15 | 63.99 | 70.28 | 59.34 | 47.68 |
240
- | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 |54.75 | 48.64 | 64.3 | 71.22 | 59.66 | 48.88 |
241
- | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 40.61 | 69.56 | 67.38 | 54.28 | 45.68 |
242
- | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 39.41 | 66.62 | 65.29 | 49.25 | 44.39 |
243
- | [text2vec](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 41.71 | 67.41 | 65.18 | 49.45 | 37.66 |
244
- | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 41.98 | 70.86 | 63.42 | 49.16 | 30.02 |
245
-
246
-
247
-
248
- ## Train
249
- This section will introduce the way we used to train the general embedding.
250
- The training scripts are in [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md),
251
- and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/pretrain/README.md) and [fine-tune](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/finetune/README.md).
252
-
253
-
254
- **1. RetroMAE Pre-train**
255
- We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE),
256
- which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)).
257
- The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720.
258
- In retromae, the mask ratio of encoder and decoder are 0.3, 0.5 respectively.
259
- We used the AdamW optimizer and the learning rate is 2e-5.
260
-
261
- **Pre-training data**:
262
- - English:
263
- - [Pile](https://pile.eleuther.ai/)
264
- - [wikipedia](https://huggingface.co/datasets/wikipedia)
265
- - [msmarco](https://huggingface.co/datasets/Tevatron/msmarco-passage-corpus)
266
- - Chinese:
267
- - [wudao](https://github.com/BAAI-WuDao/Data)
268
-
269
-
270
- **2. Finetune**
271
- We fine-tune the model using a contrastive objective.
272
- The format of input data is a triple`(query, positive, negative)`.
273
- Besides the negative in the triple, we also adopt in-batch negatives strategy.
274
- We employ the cross-device negatives sharing method to share negatives among different GPUs,
275
- which can dramatically **increase the number of negatives**.
276
-
277
- We trained our model on 48 A100(40G) GPUs with a large batch size of 32,784 (so there are **65,567** negatives for each query in a batch).
278
- We used the AdamW optimizer and the learning rate is 1e-5.
279
- The temperature for contrastive loss is 0.01.
280
-
281
- Besides, we add instruction to the query for s2p(short query to long passage) retrieval task in the training (add nothing to passages).
282
- For English, the instruction is `Represent this sentence for searching relevant passages: `;
283
- For Chinese, the instruction is `为这个句子生成表示以用于检索相关文章:`.
284
- In the evaluation, the instruction should be added for queries in retrieval task, not be added for other tasks.
285
- Noted that the instruction is not needed for passages.
286
-
287
- The finetune script is accessible in this repository: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
288
- You can easily finetune your model with it.
289
-
290
- **Training data**:
291
-
292
- - For English, we collect 230M text pairs from [wikipedia](https://huggingface.co/datasets/wikipedia), [cc-net](https://github.com/facebookresearch/cc_net), and so on.
293
-
294
- - For chinese, we collect 120M text pairs from [wudao](https://github.com/BAAI-WuDao/Data), [simclue](https://github.com/CLUEbenchmark/SimCLUE), and so on.
295
-
296
- **The data collection is to be released in the future.**
297
-
298
-
299
- ## Schedule
300
- - [x] Chinese Massive Text Embedding Benchmark
301
- - [x] release baai-general-embedding models
302
- - [x] release codes for training
303
- - [ ] Multilingual model
304
- - [ ] Training Datasets
305
- - [ ] ...
306
-
307
- We will continually update the embedding models and training codes,
308
- hoping to promote the development of the embedding model community.
309
-
310
-
311
- ## Contact
312
- If you have any question or suggestion related to this project, feel free to open an issue or pull a request.
313
- You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]).
314
-
315
-
316
- ## License
317
- FlagEmbedding is licensed under [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
318
-
319
-
320
-
321
-
322
-
323
- <h1 align="center">FlagEmbedding</h1>
324
-
325
-
326
- <h4 align="center">
327
- <p>
328
- <a href=#model-list>Model List</a> |
329
- <a href=#usage>Usage</a> |
330
- <a href="#evaluation">Evaluation</a> |
331
- <a href="#train">Train</a> |
332
- <a href="#contact">Contact</a> |
333
- <a href="#license">License</a>
334
- <p>
335
- </h4>
336
-
337
- More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
338
-
339
-
340
-
341
- [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
342
-
343
- FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
344
- And it also can be used in vector databases for LLMs.
345
-
346
- ************* 🌟**Updates**🌟 *************
347
- - 09/12/2023: New Release:
348
- - **New reranker model**: release a cross-encoder model bge-reranker-base, which is more powerful than embedding model. We recommend to use/fine-tune it to re-rank top-k documents returned by embedding models.
349
- - **update embedding model**: release bge-*-v1.5 embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
350
- - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
351
- - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
352
- - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
353
- - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
354
- - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
355
-
356
-
357
- ## Model List
358
-
359
- `bge` is short for `BAAI general embedding`.
360
-
361
- | Model | Language | | Description | query instruction for retrieval\* |
362
- |:-------------------------------|:--------:| :--------:| :--------:|:--------:|
363
- | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
364
- | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
365
- | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
366
- | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
367
- | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
368
- | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
369
- | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
370
- | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
371
- | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
372
- | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
373
- | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
374
- | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
375
- | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
376
- | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
377
-
378
-
379
- \*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
380
-
381
- \**: To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
382
- For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
383
-
384
-
385
- ## Frequently asked questions
386
-
387
- <details>
388
- <summary>1. How to fine-tune bge embedding model?</summary>
389
-
390
- <!-- ### How to fine-tune bge embedding model? -->
391
- Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
392
- Some suggestions:
393
- - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#data-format), which can improve the retrieval performance.
394
- - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
395
- - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
396
-
397
-
398
- </details>
399
-
400
- <details>
401
- <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
402
-
403
- <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
404
- **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
405
-
406
- Since we finetune the models by contrastive learning with a temperature of 0.01,
407
- the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
408
- So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
409
-
410
- For downstream tasks, such as passage retrieval or semantic similarity,
411
- **what matters is the relative order of the scores, not the absolute value.**
412
- If you need to filter similar sentences based on a similarity threshold,
413
- please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
414
-
415
- </details>
416
-
417
- <details>
418
- <summary>3. When does the query instruction need to be used</summary>
419
-
420
- <!-- ### When does the query instruction need to be used -->
421
-
422
- For a retrieval task that uses short queries to find long related documents,
423
- it is recommended to add instructions for these short queries.
424
- **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
425
- In all cases, the documents/passages do not need to add the instruction.
426
-
427
- </details>
428
-
429
-
430
- ## Usage
431
-
432
- ### Usage for Embedding Model
433
-
434
- Here are some examples for using `bge` models with
435
- [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
436
-
437
- #### Using FlagEmbedding
438
- ```
439
- pip install -U FlagEmbedding
440
- ```
441
- If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
442
-
443
- ```python
444
- from FlagEmbedding import FlagModel
445
- sentences_1 = ["样例数据-1", "样例数据-2"]
446
- sentences_2 = ["样例数据-3", "样例数据-4"]
447
- model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
448
- embeddings_1 = model.encode(sentences_1)
449
- embeddings_2 = model.encode(sentences_2)
450
- similarity = embeddings_1 @ embeddings_2.T
451
- print(similarity)
452
-
453
- # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
454
- # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
455
- queries = ['query_1', 'query_2']
456
- passages = ["样例文档-1", "样例文档-2"]
457
- q_embeddings = model.encode_queries(queries)
458
- p_embeddings = model.encode(passages)
459
- scores = q_embeddings @ p_embeddings.T
460
- ```
461
- For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
462
-
463
- By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
464
- You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
465
-
466
-
467
- #### Using Sentence-Transformers
468
-
469
- You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
470
-
471
- ```
472
- pip install -U sentence-transformers
473
- ```
474
- ```python
475
- from sentence_transformers import SentenceTransformer
476
- sentences_1 = ["样例数据-1", "样例数据-2"]
477
- sentences_2 = ["样例数据-3", "样例数据-4"]
478
- model = SentenceTransformer('BAAI/bge-large-zh')
479
- embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
480
- embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
481
- similarity = embeddings_1 @ embeddings_2.T
482
- print(similarity)
483
- ```
484
- For s2p(short query to long passage) retrieval task,
485
- each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
486
- But the instruction is not needed for passages.
487
- ```python
488
- from sentence_transformers import SentenceTransformer
489
- queries = ['query_1', 'query_2']
490
- passages = ["样例文档-1", "样例文档-2"]
491
- instruction = "为这个句子生成表示以用于检索相关文章:"
492
-
493
- model = SentenceTransformer('BAAI/bge-large-zh')
494
- q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
495
- p_embeddings = model.encode(passages, normalize_embeddings=True)
496
- scores = q_embeddings @ p_embeddings.T
497
- ```
498
-
499
- #### Using Langchain
500
-
501
- You can use `bge` in langchain like this:
502
- ```python
503
- from langchain.embeddings import HuggingFaceBgeEmbeddings
504
- model_name = "BAAI/bge-small-en"
505
- model_kwargs = {'device': 'cuda'}
506
- encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
507
- model = HuggingFaceBgeEmbeddings(
508
- model_name=model_name,
509
- model_kwargs=model_kwargs,
510
- encode_kwargs=encode_kwargs,
511
- query_instruction="为这个句子生成表示以用于检索相关文章:"
512
- )
513
- model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
514
- ```
515
-
516
-
517
- #### Using HuggingFace Transformers
518
-
519
- With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
520
-
521
- ```python
522
- from transformers import AutoTokenizer, AutoModel
523
- import torch
524
- # Sentences we want sentence embeddings for
525
- sentences = ["样例数据-1", "样例数据-2"]
526
-
527
- # Load model from HuggingFace Hub
528
- tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
529
- model = AutoModel.from_pretrained('BAAI/bge-large-zh')
530
- model.eval()
531
-
532
- # Tokenize sentences
533
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
534
- # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
535
- # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
536
-
537
- # Compute token embeddings
538
- with torch.no_grad():
539
- model_output = model(**encoded_input)
540
- # Perform pooling. In this case, cls pooling.
541
- sentence_embeddings = model_output[0][:, 0]
542
- # normalize embeddings
543
- sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
544
- print("Sentence embeddings:", sentence_embeddings)
545
- ```
546
-
547
- ### Usage for Reranker
548
-
549
- You can get a relevance score by inputting query and passage to the reranker.
550
- The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
551
-
552
-
553
- #### Using FlagEmbedding
554
- ```
555
- pip install -U FlagEmbedding
556
- ```
557
-
558
- Get relevance score:
559
- ```python
560
- from FlagEmbedding import FlagReranker
561
- reranker = FlagReranker('BAAI/bge-reranker-base', use_fp16=True) #use fp16 can speed up computing
562
-
563
- score = reranker.compute_score(['query', 'passage'])
564
- print(score)
565
-
566
- scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
567
- print(scores)
568
- ```
569
-
570
-
571
- #### Using Huggingface transformers
572
-
573
- ```python
574
- import torch
575
- from transformers import AutoModelForSequenceClassification, AutoTokenizer, BatchEncoding, PreTrainedTokenizerFast
576
-
577
- tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-base')
578
- model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base')
579
- model.eval()
580
-
581
- pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
582
- with torch.no_grad():
583
- inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
584
- scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
585
- print(scores)
586
- ```
587
-
588
- ## Evaluation
589
-
590
- `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
591
- For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
592
-
593
- - **MTEB**:
594
-
595
- | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
596
- |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
597
- | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
598
- | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
599
- | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
600
- | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
601
- | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
602
- | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
603
- | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
604
- | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
605
- | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
606
- | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
607
- | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
608
- | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
609
- | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
610
- | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
611
- | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
612
- | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
613
- | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
614
-
615
-
616
-
617
- - **C-MTEB**:
618
- We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
619
- Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
620
-
621
- | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
622
- |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
623
- | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
624
- | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
625
- | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
626
- | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
627
- | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
628
- | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
629
- | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
630
- | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
631
- | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
632
- | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
633
- | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
634
- | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
635
- | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
636
- | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
637
- | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
638
- | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
639
-
640
-
641
- - **Reranking**:
642
- See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
643
-
644
- | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MmarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
645
- |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
646
- | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
647
- | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
648
- | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
649
- | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
650
- | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
651
- | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
652
- | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
653
- | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
654
- | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
655
- | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
656
-
657
- \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval task
658
-
659
- ## Train
660
-
661
- ### BAAI Embedding
662
-
663
- We pre-train the models using retromae and train them on large-scale pairs data using contrastive learning.
664
- **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
665
- We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
666
- Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
667
- More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
668
-
669
-
670
-
671
- ### BGE Reranker
672
-
673
- Cross-encoder will perform full-attention over the input pair,
674
- which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
675
- Therefore, it can be used to re-rank the top-k documents returned by embedding model.
676
- We train the cross-encoder on a multilingual pair data,
677
- The data format is the same as embedding model, so you can fine-tune it easily following our example.
678
- More details pelease refer to [./FlagEmbedding/reranker/README.md](./FlagEmbedding/reranker/README.md)
679
-
680
-
681
- ## Contact
682
- If you have any question or suggestion related to this project, feel free to open an issue or pull request.
683
- You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]).
684
-
685
-
686
- ## License
687
- FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
688
-
689
-
690
-
691
-
692
-
693
- **Recommend switching to newest bge-large-zh-noinstruct-v1.5, which has more reasonable similarity distribution and same method of usage.**
694
 
695
  <h1 align="center">FlagEmbedding</h1>
696
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - zh
5
+ pipeline_tag: sentence-similarity
6
+ ---
7
 
8
 
9
+ **Recommend switching to newest [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) , which has more reasonable similarity distribution and same method of usage.**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  <h1 align="center">FlagEmbedding</h1>
12