Update README.md
Browse files
README.md
CHANGED
@@ -7,50 +7,202 @@ tags:
|
|
7 |
|
8 |
---
|
9 |
|
10 |
-
#
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
<!--- Describe your model here -->
|
15 |
|
16 |
-
##
|
17 |
|
18 |
-
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
```
|
21 |
-
|
|
|
|
|
22 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
```python
|
27 |
-
from
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
model =
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
```
|
34 |
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
40 |
|
41 |
-
|
42 |
|
|
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
## Full Model Architecture
|
46 |
```
|
47 |
-
|
48 |
-
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
49 |
-
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
50 |
-
(2): Normalize()
|
51 |
-
)
|
52 |
```
|
53 |
|
54 |
-
## Citing & Authors
|
55 |
|
56 |
-
|
|
|
7 |
|
8 |
---
|
9 |
|
10 |
+
# BGE-M3
|
11 |
+
In this project, we introduce BGE-M3, which is distinguished for its versatility in Multi-Functionality, Multi-Linguality, and Multi-Granularity.
|
12 |
+
- Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval.
|
13 |
+
- Multi-Linguality: It can support more than 100 working languages.
|
14 |
+
- Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens.
|
15 |
|
16 |
+
**Some suggestions for retrieval pipeline in RAG:**
|
17 |
+
We recommend to use following pipeline: hybrid retrieval + re-ranking.
|
18 |
+
- Hybrid retrieval leverages the strengths of various methods, offering higher accuracy and stronger generalization capabilities.
|
19 |
+
A classic example: using both embedding retrieval and the BM25 algorithm.
|
20 |
+
Now, you can try to use BGE-M3, which supports both embedding and sparse retrieval.
|
21 |
+
This allows you to obtain token weights (similar to the BM25) without any additional cost when generate dense embeddings.
|
22 |
+
- As cross-encoder models, re-ranker demonstrates higher accuracy than bi-encoder embedding model.
|
23 |
+
Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker), [cohere-reranker](https://txt.cohere.com/rerank/)) after retrieval can further filter the selected text.
|
24 |
|
|
|
25 |
|
26 |
+
## FAQ
|
27 |
|
28 |
+
**1. Introduction for different retrieval methods**
|
29 |
|
30 |
+
- Dense retrieval: map the text into a single embedding, e.g., [DPR](https://arxiv.org/abs/2004.04906), [BGE-v1.5](https://github.com/FlagOpen/FlagEmbedding)
|
31 |
+
- Sparse retrieval (lexical matching): a vector of size equal to the vocabulary, with the majority of positions set to zero, calculating a weight only for tokens present in the text. e.g., BM25, [unicoil](https://arxiv.org/pdf/2106.14807.pdf), and [splade](https://arxiv.org/abs/2107.05720)
|
32 |
+
- Multi-vector retrieval: use multiple vectors to represent a text, e.g., [ColBERT](https://arxiv.org/abs/2004.12832).
|
33 |
+
|
34 |
+
**2. How to use BGE-M3 in other projects?**
|
35 |
+
|
36 |
+
For embedding retrieval, you can employ the BGE-M3 model using the same approach as BGE.
|
37 |
+
The only difference is that the BGE-M3 model no longer requires adding instructions to the queries.
|
38 |
+
For sparse retrieval methods, most open-source libraries currently do not support direct utilization of the BGE-M3 model.
|
39 |
+
Contributions from the community are welcome.
|
40 |
+
|
41 |
+
|
42 |
+
**3. How to fine-tune bge-M3 model?**
|
43 |
+
|
44 |
+
You can follow the common in this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune)
|
45 |
+
to fine-tune the dense embedding.
|
46 |
+
|
47 |
+
Our code and data for unified fine-tuning (dense, sparse, and multi-vectors) will be released.
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
## Usage
|
53 |
+
|
54 |
+
Install:
|
55 |
```
|
56 |
+
git clone https://github.com/FlagOpen/FlagEmbedding.git
|
57 |
+
cd FlagEmbedding
|
58 |
+
pip install -e .
|
59 |
```
|
60 |
+
or:
|
61 |
+
```
|
62 |
+
pip install -U FlagEmbedding
|
63 |
+
```
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
### Generate Embedding for text
|
68 |
+
|
69 |
+
- Dense Embedding
|
70 |
+
```python
|
71 |
+
from FlagEmbedding import BGEM3FlagModel
|
72 |
+
|
73 |
+
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
74 |
+
|
75 |
+
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
76 |
+
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
77 |
+
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
78 |
+
|
79 |
+
embeddings_1 = model.encode(sentences_1)['dense_vecs']
|
80 |
+
embeddings_2 = model.encode(sentences_2)['dense_vecs']
|
81 |
+
similarity = embeddings_1 @ embeddings_2.T
|
82 |
+
print(similarity)
|
83 |
+
# [[0.6265, 0.3477], [0.3499, 0.678 ]]
|
84 |
+
```
|
85 |
+
You also can use sentence-transformers and huggingface transformers to generate dense embeddings.
|
86 |
+
Refer to [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding#usage) for details.
|
87 |
+
|
88 |
+
|
89 |
+
- Sparse Embedding (Lexical Weight)
|
90 |
+
```python
|
91 |
+
from FlagEmbedding import BGEM3FlagModel
|
92 |
+
|
93 |
+
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
94 |
+
|
95 |
+
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
96 |
+
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
97 |
+
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
98 |
|
99 |
+
output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=False)
|
100 |
+
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=False)
|
101 |
|
102 |
+
# you can see the weight for each token:
|
103 |
+
print(model.convert_id_to_token(output_1['lexical_weights']))
|
104 |
+
# [{'What': 0.08356, 'is': 0.0814, 'B': 0.1296, 'GE': 0.252, 'M': 0.1702, '3': 0.2695, '?': 0.04092},
|
105 |
+
# {'De': 0.05005, 'fin': 0.1368, 'ation': 0.04498, 'of': 0.0633, 'BM': 0.2515, '25': 0.3335}]
|
106 |
+
|
107 |
+
|
108 |
+
# compute the scores via lexical mathcing
|
109 |
+
lexical_scores = model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_2['lexical_weights'][0])
|
110 |
+
print(lexical_scores)
|
111 |
+
# 0.19554901123046875
|
112 |
+
|
113 |
+
print(model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_1['lexical_weights'][1]))
|
114 |
+
# 0.0
|
115 |
+
```
|
116 |
+
|
117 |
+
- Multi-Vector (ColBERT)
|
118 |
```python
|
119 |
+
from FlagEmbedding import BGEM3FlagModel
|
120 |
+
|
121 |
+
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True)
|
122 |
+
|
123 |
+
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
124 |
+
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
125 |
+
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
126 |
|
127 |
+
output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=True)
|
128 |
+
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=True)
|
129 |
+
|
130 |
+
print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][0]))
|
131 |
+
print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][1]))
|
132 |
+
# 0.7797
|
133 |
+
# 0.4620
|
134 |
```
|
135 |
|
136 |
|
137 |
+
### Compute score for text pairs
|
138 |
+
Input a list of text pairs, you can get the scores computed by different methods.
|
139 |
+
```python
|
140 |
+
from FlagEmbedding import BGEM3FlagModel
|
141 |
+
|
142 |
+
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True)
|
143 |
+
|
144 |
+
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
145 |
+
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
146 |
+
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
147 |
+
|
148 |
+
sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2]
|
149 |
+
print(model.compute_score(sentence_pairs))
|
150 |
+
# {
|
151 |
+
# 'colbert': [0.7796499729156494, 0.4621465802192688, 0.4523794651031494, 0.7898575067520142],
|
152 |
+
# 'sparse': [0.05865478515625, 0.0026397705078125, 0.0, 0.0540771484375],
|
153 |
+
# 'dense': [0.6259765625, 0.347412109375, 0.349853515625, 0.67822265625],
|
154 |
+
# 'sparse+dense': [0.5266395211219788, 0.2692706882953644, 0.2691181004047394, 0.563307523727417],
|
155 |
+
# 'colbert+sparse+dense': [0.6366440653800964, 0.3531297743320465, 0.3487969636917114, 0.6618075370788574]
|
156 |
+
# }
|
157 |
+
```
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
## Evaluation
|
163 |
|
164 |
+
- Multilingual (Miracl dataset)
|
165 |
|
166 |
+
![avatar](./imgs/miracl.jpg)
|
167 |
|
168 |
+
- Cross-lingual (MKQA dataset)
|
169 |
|
170 |
+
![avatar](./imgs/mkqa.jpg)
|
171 |
|
172 |
+
- Long Document Retrieval
|
173 |
+
|
174 |
+
![avatar](./imgs/long.jpg)
|
175 |
+
|
176 |
+
|
177 |
+
## Training
|
178 |
+
- Self-knowledge Distillation: combining multiple outputs from different
|
179 |
+
retrieval modes as reward signal to enhance the performance of single mode(especially for sparse retrieval and multi-vec(colbert) retrival)
|
180 |
+
- Efficient Batching: Improve the efficiency when fine-tuning on long text.
|
181 |
+
The small-batch strategy is simple but effective, which also can used to fine-tune large embedding model.
|
182 |
+
- MCLS: A simple method to improve the performance on long text without fine-tuning.
|
183 |
+
If you have no enough resource to fine-tuning model with long text, the method is useful.
|
184 |
+
|
185 |
+
Refer to our [report]() for more details.
|
186 |
+
|
187 |
+
**The fine-tuning codes and datasets will be open-sourced in the near future.**
|
188 |
+
|
189 |
+
## Models
|
190 |
+
|
191 |
+
We release two versions:
|
192 |
+
- [BAAI/bge-m3-unsupervised](https://huggingface.co/BAAI/bge-m3-unsupervised): the model after contrastive learning in a large-scale dataset
|
193 |
+
- [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3): the final model fine-tuned from BAAI/bge-m3-unsupervised
|
194 |
+
|
195 |
+
## Acknowledgement
|
196 |
+
|
197 |
+
Thanks the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc.
|
198 |
+
|
199 |
+
## Citation
|
200 |
+
|
201 |
+
If you find this repository useful, please consider giving a star :star: and citation
|
202 |
|
|
|
203 |
```
|
204 |
+
|
|
|
|
|
|
|
|
|
205 |
```
|
206 |
|
|
|
207 |
|
208 |
+
|