Update README.md
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ tags:
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
-
|
8 |
---
|
9 |
|
10 |
For more details please refer to our github repo: https://github.com/FlagOpen/FlagEmbedding
|
@@ -84,15 +84,16 @@ pip install -U FlagEmbedding
|
|
84 |
from FlagEmbedding import BGEM3FlagModel
|
85 |
|
86 |
model = BGEM3FlagModel('BAAI/bge-m3',
|
87 |
-
batch_size=12, #
|
88 |
-
max_length=8192, # If you don't need such a long length, you can set a smaller value to speed up the encoding process.
|
89 |
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
90 |
|
91 |
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
92 |
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
93 |
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
94 |
|
95 |
-
embeddings_1 = model.encode(sentences_1
|
|
|
|
|
|
|
96 |
embeddings_2 = model.encode(sentences_2)['dense_vecs']
|
97 |
similarity = embeddings_1 @ embeddings_2.T
|
98 |
print(similarity)
|
@@ -162,13 +163,17 @@ sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical
|
|
162 |
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
163 |
|
164 |
sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2]
|
165 |
-
|
|
|
|
|
|
|
|
|
166 |
# {
|
167 |
-
#
|
168 |
-
#
|
169 |
-
#
|
170 |
-
#
|
171 |
-
#
|
172 |
# }
|
173 |
```
|
174 |
|
@@ -220,8 +225,4 @@ If you find this repository useful, please consider giving a star :star: and cit
|
|
220 |
|
221 |
```
|
222 |
|
223 |
-
```
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
+
license: mit
|
8 |
---
|
9 |
|
10 |
For more details please refer to our github repo: https://github.com/FlagOpen/FlagEmbedding
|
|
|
84 |
from FlagEmbedding import BGEM3FlagModel
|
85 |
|
86 |
model = BGEM3FlagModel('BAAI/bge-m3',
|
|
|
|
|
87 |
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
88 |
|
89 |
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
90 |
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
91 |
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
92 |
|
93 |
+
embeddings_1 = model.encode(sentences_1,
|
94 |
+
batch_size=12,
|
95 |
+
max_length=8192, # If you don't need such a long length, you can set a smaller value to speed up the encoding process.
|
96 |
+
)['dense_vecs']
|
97 |
embeddings_2 = model.encode(sentences_2)['dense_vecs']
|
98 |
similarity = embeddings_1 @ embeddings_2.T
|
99 |
print(similarity)
|
|
|
163 |
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
164 |
|
165 |
sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2]
|
166 |
+
|
167 |
+
print(model.compute_score(sentence_pairs,
|
168 |
+
max_passage_length=128, # a smaller max length leads to a lower latency
|
169 |
+
weights_for_different_modes=[0.4, 0.2, 0.4])) # weights_for_different_modes(w) is used to do weighted sum: w[0]*dense_score + w[1]*sparse_score + w[2]*colbert_score
|
170 |
+
|
171 |
# {
|
172 |
+
# 'colbert': [0.7796499729156494, 0.4621465802192688, 0.4523794651031494, 0.7898575067520142],
|
173 |
+
# 'sparse': [0.195556640625, 0.00879669189453125, 0.0, 0.1802978515625],
|
174 |
+
# 'dense': [0.6259765625, 0.347412109375, 0.349853515625, 0.67822265625],
|
175 |
+
# 'sparse+dense': [0.482503205537796, 0.23454029858112335, 0.2332356721162796, 0.5122477412223816],
|
176 |
+
# 'colbert+sparse+dense': [0.6013619303703308, 0.3255828022956848, 0.32089319825172424, 0.6232916116714478]
|
177 |
# }
|
178 |
```
|
179 |
|
|
|
225 |
|
226 |
```
|
227 |
|
228 |
+
```
|
|
|
|
|
|
|
|