Shitao commited on
Commit
5cedd82
1 Parent(s): f11a3f1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -7
README.md CHANGED
@@ -27,7 +27,7 @@ Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen
27
 
28
 
29
  ## News:
30
- - 2/6/2024: We release the [MLDR](https://huggingface.co/datasets/Shitao/MLDR), a long document retrieval dataset covering 13 languages.
31
  - 2/1/2024: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb)
32
 
33
 
@@ -243,22 +243,29 @@ The small-batch strategy is simple but effective, which also can used to fine-tu
243
  - MCLS: A simple method to improve the performance on long text without fine-tuning.
244
  If you have no enough resource to fine-tuning model with long text, the method is useful.
245
 
246
- Refer to our [report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) for more details.
247
 
248
  **The fine-tuning codes and datasets will be open-sourced in the near future.**
249
 
250
 
251
-
252
  ## Acknowledgement
253
 
254
- Thanks to the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc.
255
- Thanks to the open-sourced libraries like [Tevatron](https://github.com/texttron/tevatron), [pyserini](https://github.com/castorini/pyserini).
 
256
 
257
 
258
  ## Citation
259
 
260
- If you find this repository useful, please consider giving a star :star: and a citation
261
 
262
  ```
263
-
 
 
 
 
 
 
 
264
  ```
 
27
 
28
 
29
  ## News:
30
+ - 2/6/2024: We release the [MLDR](https://huggingface.co/datasets/Shitao/MLDR) (a long document retrieval dataset covering 13 languages) and [evaluation pipeline](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR).
31
  - 2/1/2024: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb)
32
 
33
 
 
243
  - MCLS: A simple method to improve the performance on long text without fine-tuning.
244
  If you have no enough resource to fine-tuning model with long text, the method is useful.
245
 
246
+ Refer to our [report](https://arxiv.org/pdf/2402.03216.pdf) for more details.
247
 
248
  **The fine-tuning codes and datasets will be open-sourced in the near future.**
249
 
250
 
 
251
  ## Acknowledgement
252
 
253
+ Thanks the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc.
254
+ Thanks the open-sourced libraries like [Tevatron](https://github.com/texttron/tevatron), [pyserial](https://github.com/pyserial/pyserial).
255
+
256
 
257
 
258
  ## Citation
259
 
260
+ If you find this repository useful, please consider giving a star :star: and citation
261
 
262
  ```
263
+ @misc{bge-m3,
264
+ title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
265
+ author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
266
+ year={2024},
267
+ eprint={2402.03216},
268
+ archivePrefix={arXiv},
269
+ primaryClass={cs.CL}
270
+ }
271
  ```