ldwang commited on
Commit
0b329b7
1 Parent(s): 9b09f79
Files changed (1) hide show
  1. README.md +236 -2694
README.md CHANGED
@@ -1,2610 +1,16 @@
1
  ---
 
2
  tags:
3
- - mteb
4
- - sentence transformers
5
- model-index:
6
- - name: bge-small-en
7
- results:
8
- - task:
9
- type: Classification
10
- dataset:
11
- type: mteb/amazon_counterfactual
12
- name: MTEB AmazonCounterfactualClassification (en)
13
- config: en
14
- split: test
15
- revision: e8379541af4e31359cca9fbcf4b00f2671dba205
16
- metrics:
17
- - type: accuracy
18
- value: 74.34328358208955
19
- - type: ap
20
- value: 37.59947775195661
21
- - type: f1
22
- value: 68.548415491933
23
- - task:
24
- type: Classification
25
- dataset:
26
- type: mteb/amazon_polarity
27
- name: MTEB AmazonPolarityClassification
28
- config: default
29
- split: test
30
- revision: e2d317d38cd51312af73b3d32a06d1a08b442046
31
- metrics:
32
- - type: accuracy
33
- value: 93.04527499999999
34
- - type: ap
35
- value: 89.60696356772135
36
- - type: f1
37
- value: 93.03361469382438
38
- - task:
39
- type: Classification
40
- dataset:
41
- type: mteb/amazon_reviews_multi
42
- name: MTEB AmazonReviewsClassification (en)
43
- config: en
44
- split: test
45
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
46
- metrics:
47
- - type: accuracy
48
- value: 46.08
49
- - type: f1
50
- value: 45.66249835363254
51
- - task:
52
- type: Retrieval
53
- dataset:
54
- type: arguana
55
- name: MTEB ArguAna
56
- config: default
57
- split: test
58
- revision: None
59
- metrics:
60
- - type: map_at_1
61
- value: 35.205999999999996
62
- - type: map_at_10
63
- value: 50.782000000000004
64
- - type: map_at_100
65
- value: 51.547
66
- - type: map_at_1000
67
- value: 51.554
68
- - type: map_at_3
69
- value: 46.515
70
- - type: map_at_5
71
- value: 49.296
72
- - type: mrr_at_1
73
- value: 35.632999999999996
74
- - type: mrr_at_10
75
- value: 50.958999999999996
76
- - type: mrr_at_100
77
- value: 51.724000000000004
78
- - type: mrr_at_1000
79
- value: 51.731
80
- - type: mrr_at_3
81
- value: 46.669
82
- - type: mrr_at_5
83
- value: 49.439
84
- - type: ndcg_at_1
85
- value: 35.205999999999996
86
- - type: ndcg_at_10
87
- value: 58.835
88
- - type: ndcg_at_100
89
- value: 62.095
90
- - type: ndcg_at_1000
91
- value: 62.255
92
- - type: ndcg_at_3
93
- value: 50.255
94
- - type: ndcg_at_5
95
- value: 55.296
96
- - type: precision_at_1
97
- value: 35.205999999999996
98
- - type: precision_at_10
99
- value: 8.421
100
- - type: precision_at_100
101
- value: 0.984
102
- - type: precision_at_1000
103
- value: 0.1
104
- - type: precision_at_3
105
- value: 20.365
106
- - type: precision_at_5
107
- value: 14.680000000000001
108
- - type: recall_at_1
109
- value: 35.205999999999996
110
- - type: recall_at_10
111
- value: 84.211
112
- - type: recall_at_100
113
- value: 98.43499999999999
114
- - type: recall_at_1000
115
- value: 99.644
116
- - type: recall_at_3
117
- value: 61.095
118
- - type: recall_at_5
119
- value: 73.4
120
- - task:
121
- type: Clustering
122
- dataset:
123
- type: mteb/arxiv-clustering-p2p
124
- name: MTEB ArxivClusteringP2P
125
- config: default
126
- split: test
127
- revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
128
- metrics:
129
- - type: v_measure
130
- value: 47.52644476278646
131
- - task:
132
- type: Clustering
133
- dataset:
134
- type: mteb/arxiv-clustering-s2s
135
- name: MTEB ArxivClusteringS2S
136
- config: default
137
- split: test
138
- revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
139
- metrics:
140
- - type: v_measure
141
- value: 39.973045724188964
142
- - task:
143
- type: Reranking
144
- dataset:
145
- type: mteb/askubuntudupquestions-reranking
146
- name: MTEB AskUbuntuDupQuestions
147
- config: default
148
- split: test
149
- revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
150
- metrics:
151
- - type: map
152
- value: 62.28285314871488
153
- - type: mrr
154
- value: 74.52743701358659
155
- - task:
156
- type: STS
157
- dataset:
158
- type: mteb/biosses-sts
159
- name: MTEB BIOSSES
160
- config: default
161
- split: test
162
- revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
163
- metrics:
164
- - type: cos_sim_pearson
165
- value: 80.09041909160327
166
- - type: cos_sim_spearman
167
- value: 79.96266537706944
168
- - type: euclidean_pearson
169
- value: 79.50774978162241
170
- - type: euclidean_spearman
171
- value: 79.9144715078551
172
- - type: manhattan_pearson
173
- value: 79.2062139879302
174
- - type: manhattan_spearman
175
- value: 79.35000081468212
176
- - task:
177
- type: Classification
178
- dataset:
179
- type: mteb/banking77
180
- name: MTEB Banking77Classification
181
- config: default
182
- split: test
183
- revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
184
- metrics:
185
- - type: accuracy
186
- value: 85.31493506493506
187
- - type: f1
188
- value: 85.2704557977762
189
- - task:
190
- type: Clustering
191
- dataset:
192
- type: mteb/biorxiv-clustering-p2p
193
- name: MTEB BiorxivClusteringP2P
194
- config: default
195
- split: test
196
- revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
197
- metrics:
198
- - type: v_measure
199
- value: 39.6837242810816
200
- - task:
201
- type: Clustering
202
- dataset:
203
- type: mteb/biorxiv-clustering-s2s
204
- name: MTEB BiorxivClusteringS2S
205
- config: default
206
- split: test
207
- revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
208
- metrics:
209
- - type: v_measure
210
- value: 35.38881249555897
211
- - task:
212
- type: Retrieval
213
- dataset:
214
- type: BeIR/cqadupstack
215
- name: MTEB CQADupstackAndroidRetrieval
216
- config: default
217
- split: test
218
- revision: None
219
- metrics:
220
- - type: map_at_1
221
- value: 27.884999999999998
222
- - type: map_at_10
223
- value: 39.574
224
- - type: map_at_100
225
- value: 40.993
226
- - type: map_at_1000
227
- value: 41.129
228
- - type: map_at_3
229
- value: 36.089
230
- - type: map_at_5
231
- value: 38.191
232
- - type: mrr_at_1
233
- value: 34.477999999999994
234
- - type: mrr_at_10
235
- value: 45.411
236
- - type: mrr_at_100
237
- value: 46.089999999999996
238
- - type: mrr_at_1000
239
- value: 46.147
240
- - type: mrr_at_3
241
- value: 42.346000000000004
242
- - type: mrr_at_5
243
- value: 44.292
244
- - type: ndcg_at_1
245
- value: 34.477999999999994
246
- - type: ndcg_at_10
247
- value: 46.123999999999995
248
- - type: ndcg_at_100
249
- value: 51.349999999999994
250
- - type: ndcg_at_1000
251
- value: 53.578
252
- - type: ndcg_at_3
253
- value: 40.824
254
- - type: ndcg_at_5
255
- value: 43.571
256
- - type: precision_at_1
257
- value: 34.477999999999994
258
- - type: precision_at_10
259
- value: 8.841000000000001
260
- - type: precision_at_100
261
- value: 1.4460000000000002
262
- - type: precision_at_1000
263
- value: 0.192
264
- - type: precision_at_3
265
- value: 19.742
266
- - type: precision_at_5
267
- value: 14.421000000000001
268
- - type: recall_at_1
269
- value: 27.884999999999998
270
- - type: recall_at_10
271
- value: 59.087
272
- - type: recall_at_100
273
- value: 80.609
274
- - type: recall_at_1000
275
- value: 95.054
276
- - type: recall_at_3
277
- value: 44.082
278
- - type: recall_at_5
279
- value: 51.593999999999994
280
- - task:
281
- type: Retrieval
282
- dataset:
283
- type: BeIR/cqadupstack
284
- name: MTEB CQADupstackEnglishRetrieval
285
- config: default
286
- split: test
287
- revision: None
288
- metrics:
289
- - type: map_at_1
290
- value: 30.639
291
- - type: map_at_10
292
- value: 40.047
293
- - type: map_at_100
294
- value: 41.302
295
- - type: map_at_1000
296
- value: 41.425
297
- - type: map_at_3
298
- value: 37.406
299
- - type: map_at_5
300
- value: 38.934000000000005
301
- - type: mrr_at_1
302
- value: 37.707
303
- - type: mrr_at_10
304
- value: 46.082
305
- - type: mrr_at_100
306
- value: 46.745
307
- - type: mrr_at_1000
308
- value: 46.786
309
- - type: mrr_at_3
310
- value: 43.980999999999995
311
- - type: mrr_at_5
312
- value: 45.287
313
- - type: ndcg_at_1
314
- value: 37.707
315
- - type: ndcg_at_10
316
- value: 45.525
317
- - type: ndcg_at_100
318
- value: 49.976
319
- - type: ndcg_at_1000
320
- value: 51.94499999999999
321
- - type: ndcg_at_3
322
- value: 41.704
323
- - type: ndcg_at_5
324
- value: 43.596000000000004
325
- - type: precision_at_1
326
- value: 37.707
327
- - type: precision_at_10
328
- value: 8.465
329
- - type: precision_at_100
330
- value: 1.375
331
- - type: precision_at_1000
332
- value: 0.183
333
- - type: precision_at_3
334
- value: 19.979
335
- - type: precision_at_5
336
- value: 14.115
337
- - type: recall_at_1
338
- value: 30.639
339
- - type: recall_at_10
340
- value: 54.775
341
- - type: recall_at_100
342
- value: 73.678
343
- - type: recall_at_1000
344
- value: 86.142
345
- - type: recall_at_3
346
- value: 43.230000000000004
347
- - type: recall_at_5
348
- value: 48.622
349
- - task:
350
- type: Retrieval
351
- dataset:
352
- type: BeIR/cqadupstack
353
- name: MTEB CQADupstackGamingRetrieval
354
- config: default
355
- split: test
356
- revision: None
357
- metrics:
358
- - type: map_at_1
359
- value: 38.038
360
- - type: map_at_10
361
- value: 49.922
362
- - type: map_at_100
363
- value: 51.032
364
- - type: map_at_1000
365
- value: 51.085
366
- - type: map_at_3
367
- value: 46.664
368
- - type: map_at_5
369
- value: 48.588
370
- - type: mrr_at_1
371
- value: 43.95
372
- - type: mrr_at_10
373
- value: 53.566
374
- - type: mrr_at_100
375
- value: 54.318999999999996
376
- - type: mrr_at_1000
377
- value: 54.348
378
- - type: mrr_at_3
379
- value: 51.066
380
- - type: mrr_at_5
381
- value: 52.649
382
- - type: ndcg_at_1
383
- value: 43.95
384
- - type: ndcg_at_10
385
- value: 55.676
386
- - type: ndcg_at_100
387
- value: 60.126000000000005
388
- - type: ndcg_at_1000
389
- value: 61.208
390
- - type: ndcg_at_3
391
- value: 50.20400000000001
392
- - type: ndcg_at_5
393
- value: 53.038
394
- - type: precision_at_1
395
- value: 43.95
396
- - type: precision_at_10
397
- value: 8.953
398
- - type: precision_at_100
399
- value: 1.2109999999999999
400
- - type: precision_at_1000
401
- value: 0.135
402
- - type: precision_at_3
403
- value: 22.256999999999998
404
- - type: precision_at_5
405
- value: 15.524
406
- - type: recall_at_1
407
- value: 38.038
408
- - type: recall_at_10
409
- value: 69.15
410
- - type: recall_at_100
411
- value: 88.31599999999999
412
- - type: recall_at_1000
413
- value: 95.993
414
- - type: recall_at_3
415
- value: 54.663
416
- - type: recall_at_5
417
- value: 61.373
418
- - task:
419
- type: Retrieval
420
- dataset:
421
- type: BeIR/cqadupstack
422
- name: MTEB CQADupstackGisRetrieval
423
- config: default
424
- split: test
425
- revision: None
426
- metrics:
427
- - type: map_at_1
428
- value: 24.872
429
- - type: map_at_10
430
- value: 32.912
431
- - type: map_at_100
432
- value: 33.972
433
- - type: map_at_1000
434
- value: 34.046
435
- - type: map_at_3
436
- value: 30.361
437
- - type: map_at_5
438
- value: 31.704
439
- - type: mrr_at_1
440
- value: 26.779999999999998
441
- - type: mrr_at_10
442
- value: 34.812
443
- - type: mrr_at_100
444
- value: 35.754999999999995
445
- - type: mrr_at_1000
446
- value: 35.809000000000005
447
- - type: mrr_at_3
448
- value: 32.335
449
- - type: mrr_at_5
450
- value: 33.64
451
- - type: ndcg_at_1
452
- value: 26.779999999999998
453
- - type: ndcg_at_10
454
- value: 37.623
455
- - type: ndcg_at_100
456
- value: 42.924
457
- - type: ndcg_at_1000
458
- value: 44.856
459
- - type: ndcg_at_3
460
- value: 32.574
461
- - type: ndcg_at_5
462
- value: 34.842
463
- - type: precision_at_1
464
- value: 26.779999999999998
465
- - type: precision_at_10
466
- value: 5.729
467
- - type: precision_at_100
468
- value: 0.886
469
- - type: precision_at_1000
470
- value: 0.109
471
- - type: precision_at_3
472
- value: 13.559
473
- - type: precision_at_5
474
- value: 9.469
475
- - type: recall_at_1
476
- value: 24.872
477
- - type: recall_at_10
478
- value: 50.400999999999996
479
- - type: recall_at_100
480
- value: 74.954
481
- - type: recall_at_1000
482
- value: 89.56
483
- - type: recall_at_3
484
- value: 36.726
485
- - type: recall_at_5
486
- value: 42.138999999999996
487
- - task:
488
- type: Retrieval
489
- dataset:
490
- type: BeIR/cqadupstack
491
- name: MTEB CQADupstackMathematicaRetrieval
492
- config: default
493
- split: test
494
- revision: None
495
- metrics:
496
- - type: map_at_1
497
- value: 16.803
498
- - type: map_at_10
499
- value: 24.348
500
- - type: map_at_100
501
- value: 25.56
502
- - type: map_at_1000
503
- value: 25.668000000000003
504
- - type: map_at_3
505
- value: 21.811
506
- - type: map_at_5
507
- value: 23.287
508
- - type: mrr_at_1
509
- value: 20.771
510
- - type: mrr_at_10
511
- value: 28.961
512
- - type: mrr_at_100
513
- value: 29.979
514
- - type: mrr_at_1000
515
- value: 30.046
516
- - type: mrr_at_3
517
- value: 26.555
518
- - type: mrr_at_5
519
- value: 28.060000000000002
520
- - type: ndcg_at_1
521
- value: 20.771
522
- - type: ndcg_at_10
523
- value: 29.335
524
- - type: ndcg_at_100
525
- value: 35.188
526
- - type: ndcg_at_1000
527
- value: 37.812
528
- - type: ndcg_at_3
529
- value: 24.83
530
- - type: ndcg_at_5
531
- value: 27.119
532
- - type: precision_at_1
533
- value: 20.771
534
- - type: precision_at_10
535
- value: 5.4350000000000005
536
- - type: precision_at_100
537
- value: 0.9480000000000001
538
- - type: precision_at_1000
539
- value: 0.13
540
- - type: precision_at_3
541
- value: 11.982
542
- - type: precision_at_5
543
- value: 8.831
544
- - type: recall_at_1
545
- value: 16.803
546
- - type: recall_at_10
547
- value: 40.039
548
- - type: recall_at_100
549
- value: 65.83200000000001
550
- - type: recall_at_1000
551
- value: 84.478
552
- - type: recall_at_3
553
- value: 27.682000000000002
554
- - type: recall_at_5
555
- value: 33.535
556
- - task:
557
- type: Retrieval
558
- dataset:
559
- type: BeIR/cqadupstack
560
- name: MTEB CQADupstackPhysicsRetrieval
561
- config: default
562
- split: test
563
- revision: None
564
- metrics:
565
- - type: map_at_1
566
- value: 28.345
567
- - type: map_at_10
568
- value: 37.757000000000005
569
- - type: map_at_100
570
- value: 39.141
571
- - type: map_at_1000
572
- value: 39.262
573
- - type: map_at_3
574
- value: 35.183
575
- - type: map_at_5
576
- value: 36.592
577
- - type: mrr_at_1
578
- value: 34.649
579
- - type: mrr_at_10
580
- value: 43.586999999999996
581
- - type: mrr_at_100
582
- value: 44.481
583
- - type: mrr_at_1000
584
- value: 44.542
585
- - type: mrr_at_3
586
- value: 41.29
587
- - type: mrr_at_5
588
- value: 42.642
589
- - type: ndcg_at_1
590
- value: 34.649
591
- - type: ndcg_at_10
592
- value: 43.161
593
- - type: ndcg_at_100
594
- value: 48.734
595
- - type: ndcg_at_1000
596
- value: 51.046
597
- - type: ndcg_at_3
598
- value: 39.118
599
- - type: ndcg_at_5
600
- value: 41.022
601
- - type: precision_at_1
602
- value: 34.649
603
- - type: precision_at_10
604
- value: 7.603
605
- - type: precision_at_100
606
- value: 1.209
607
- - type: precision_at_1000
608
- value: 0.157
609
- - type: precision_at_3
610
- value: 18.319
611
- - type: precision_at_5
612
- value: 12.839
613
- - type: recall_at_1
614
- value: 28.345
615
- - type: recall_at_10
616
- value: 53.367
617
- - type: recall_at_100
618
- value: 76.453
619
- - type: recall_at_1000
620
- value: 91.82000000000001
621
- - type: recall_at_3
622
- value: 41.636
623
- - type: recall_at_5
624
- value: 46.760000000000005
625
- - task:
626
- type: Retrieval
627
- dataset:
628
- type: BeIR/cqadupstack
629
- name: MTEB CQADupstackProgrammersRetrieval
630
- config: default
631
- split: test
632
- revision: None
633
- metrics:
634
- - type: map_at_1
635
- value: 22.419
636
- - type: map_at_10
637
- value: 31.716
638
- - type: map_at_100
639
- value: 33.152
640
- - type: map_at_1000
641
- value: 33.267
642
- - type: map_at_3
643
- value: 28.74
644
- - type: map_at_5
645
- value: 30.48
646
- - type: mrr_at_1
647
- value: 28.310999999999996
648
- - type: mrr_at_10
649
- value: 37.039
650
- - type: mrr_at_100
651
- value: 38.09
652
- - type: mrr_at_1000
653
- value: 38.145
654
- - type: mrr_at_3
655
- value: 34.437
656
- - type: mrr_at_5
657
- value: 36.024
658
- - type: ndcg_at_1
659
- value: 28.310999999999996
660
- - type: ndcg_at_10
661
- value: 37.41
662
- - type: ndcg_at_100
663
- value: 43.647999999999996
664
- - type: ndcg_at_1000
665
- value: 46.007
666
- - type: ndcg_at_3
667
- value: 32.509
668
- - type: ndcg_at_5
669
- value: 34.943999999999996
670
- - type: precision_at_1
671
- value: 28.310999999999996
672
- - type: precision_at_10
673
- value: 6.963
674
- - type: precision_at_100
675
- value: 1.1860000000000002
676
- - type: precision_at_1000
677
- value: 0.154
678
- - type: precision_at_3
679
- value: 15.867999999999999
680
- - type: precision_at_5
681
- value: 11.507000000000001
682
- - type: recall_at_1
683
- value: 22.419
684
- - type: recall_at_10
685
- value: 49.28
686
- - type: recall_at_100
687
- value: 75.802
688
- - type: recall_at_1000
689
- value: 92.032
690
- - type: recall_at_3
691
- value: 35.399
692
- - type: recall_at_5
693
- value: 42.027
694
- - task:
695
- type: Retrieval
696
- dataset:
697
- type: BeIR/cqadupstack
698
- name: MTEB CQADupstackRetrieval
699
- config: default
700
- split: test
701
- revision: None
702
- metrics:
703
- - type: map_at_1
704
- value: 24.669249999999998
705
- - type: map_at_10
706
- value: 33.332583333333325
707
- - type: map_at_100
708
- value: 34.557833333333335
709
- - type: map_at_1000
710
- value: 34.67141666666666
711
- - type: map_at_3
712
- value: 30.663166666666662
713
- - type: map_at_5
714
- value: 32.14883333333333
715
- - type: mrr_at_1
716
- value: 29.193833333333334
717
- - type: mrr_at_10
718
- value: 37.47625
719
- - type: mrr_at_100
720
- value: 38.3545
721
- - type: mrr_at_1000
722
- value: 38.413166666666676
723
- - type: mrr_at_3
724
- value: 35.06741666666667
725
- - type: mrr_at_5
726
- value: 36.450666666666656
727
- - type: ndcg_at_1
728
- value: 29.193833333333334
729
- - type: ndcg_at_10
730
- value: 38.505416666666676
731
- - type: ndcg_at_100
732
- value: 43.81125
733
- - type: ndcg_at_1000
734
- value: 46.09558333333333
735
- - type: ndcg_at_3
736
- value: 33.90916666666667
737
- - type: ndcg_at_5
738
- value: 36.07666666666666
739
- - type: precision_at_1
740
- value: 29.193833333333334
741
- - type: precision_at_10
742
- value: 6.7251666666666665
743
- - type: precision_at_100
744
- value: 1.1058333333333332
745
- - type: precision_at_1000
746
- value: 0.14833333333333332
747
- - type: precision_at_3
748
- value: 15.554166666666665
749
- - type: precision_at_5
750
- value: 11.079250000000002
751
- - type: recall_at_1
752
- value: 24.669249999999998
753
- - type: recall_at_10
754
- value: 49.75583333333332
755
- - type: recall_at_100
756
- value: 73.06908333333332
757
- - type: recall_at_1000
758
- value: 88.91316666666667
759
- - type: recall_at_3
760
- value: 36.913250000000005
761
- - type: recall_at_5
762
- value: 42.48641666666666
763
- - task:
764
- type: Retrieval
765
- dataset:
766
- type: BeIR/cqadupstack
767
- name: MTEB CQADupstackStatsRetrieval
768
- config: default
769
- split: test
770
- revision: None
771
- metrics:
772
- - type: map_at_1
773
- value: 24.044999999999998
774
- - type: map_at_10
775
- value: 30.349999999999998
776
- - type: map_at_100
777
- value: 31.273
778
- - type: map_at_1000
779
- value: 31.362000000000002
780
- - type: map_at_3
781
- value: 28.508
782
- - type: map_at_5
783
- value: 29.369
784
- - type: mrr_at_1
785
- value: 26.994
786
- - type: mrr_at_10
787
- value: 33.12
788
- - type: mrr_at_100
789
- value: 33.904
790
- - type: mrr_at_1000
791
- value: 33.967000000000006
792
- - type: mrr_at_3
793
- value: 31.365
794
- - type: mrr_at_5
795
- value: 32.124
796
- - type: ndcg_at_1
797
- value: 26.994
798
- - type: ndcg_at_10
799
- value: 34.214
800
- - type: ndcg_at_100
801
- value: 38.681
802
- - type: ndcg_at_1000
803
- value: 40.926
804
- - type: ndcg_at_3
805
- value: 30.725
806
- - type: ndcg_at_5
807
- value: 31.967000000000002
808
- - type: precision_at_1
809
- value: 26.994
810
- - type: precision_at_10
811
- value: 5.215
812
- - type: precision_at_100
813
- value: 0.807
814
- - type: precision_at_1000
815
- value: 0.108
816
- - type: precision_at_3
817
- value: 12.986
818
- - type: precision_at_5
819
- value: 8.712
820
- - type: recall_at_1
821
- value: 24.044999999999998
822
- - type: recall_at_10
823
- value: 43.456
824
- - type: recall_at_100
825
- value: 63.675000000000004
826
- - type: recall_at_1000
827
- value: 80.05499999999999
828
- - type: recall_at_3
829
- value: 33.561
830
- - type: recall_at_5
831
- value: 36.767
832
- - task:
833
- type: Retrieval
834
- dataset:
835
- type: BeIR/cqadupstack
836
- name: MTEB CQADupstackTexRetrieval
837
- config: default
838
- split: test
839
- revision: None
840
- metrics:
841
- - type: map_at_1
842
- value: 15.672
843
- - type: map_at_10
844
- value: 22.641
845
- - type: map_at_100
846
- value: 23.75
847
- - type: map_at_1000
848
- value: 23.877000000000002
849
- - type: map_at_3
850
- value: 20.219
851
- - type: map_at_5
852
- value: 21.648
853
- - type: mrr_at_1
854
- value: 18.823
855
- - type: mrr_at_10
856
- value: 26.101999999999997
857
- - type: mrr_at_100
858
- value: 27.038
859
- - type: mrr_at_1000
860
- value: 27.118
861
- - type: mrr_at_3
862
- value: 23.669
863
- - type: mrr_at_5
864
- value: 25.173000000000002
865
- - type: ndcg_at_1
866
- value: 18.823
867
- - type: ndcg_at_10
868
- value: 27.176000000000002
869
- - type: ndcg_at_100
870
- value: 32.42
871
- - type: ndcg_at_1000
872
- value: 35.413
873
- - type: ndcg_at_3
874
- value: 22.756999999999998
875
- - type: ndcg_at_5
876
- value: 25.032
877
- - type: precision_at_1
878
- value: 18.823
879
- - type: precision_at_10
880
- value: 5.034000000000001
881
- - type: precision_at_100
882
- value: 0.895
883
- - type: precision_at_1000
884
- value: 0.132
885
- - type: precision_at_3
886
- value: 10.771
887
- - type: precision_at_5
888
- value: 8.1
889
- - type: recall_at_1
890
- value: 15.672
891
- - type: recall_at_10
892
- value: 37.296
893
- - type: recall_at_100
894
- value: 60.863
895
- - type: recall_at_1000
896
- value: 82.234
897
- - type: recall_at_3
898
- value: 25.330000000000002
899
- - type: recall_at_5
900
- value: 30.964000000000002
901
- - task:
902
- type: Retrieval
903
- dataset:
904
- type: BeIR/cqadupstack
905
- name: MTEB CQADupstackUnixRetrieval
906
- config: default
907
- split: test
908
- revision: None
909
- metrics:
910
- - type: map_at_1
911
- value: 24.633
912
- - type: map_at_10
913
- value: 32.858
914
- - type: map_at_100
915
- value: 34.038000000000004
916
- - type: map_at_1000
917
- value: 34.141
918
- - type: map_at_3
919
- value: 30.209000000000003
920
- - type: map_at_5
921
- value: 31.567
922
- - type: mrr_at_1
923
- value: 28.358
924
- - type: mrr_at_10
925
- value: 36.433
926
- - type: mrr_at_100
927
- value: 37.352000000000004
928
- - type: mrr_at_1000
929
- value: 37.41
930
- - type: mrr_at_3
931
- value: 34.033
932
- - type: mrr_at_5
933
- value: 35.246
934
- - type: ndcg_at_1
935
- value: 28.358
936
- - type: ndcg_at_10
937
- value: 37.973
938
- - type: ndcg_at_100
939
- value: 43.411
940
- - type: ndcg_at_1000
941
- value: 45.747
942
- - type: ndcg_at_3
943
- value: 32.934999999999995
944
- - type: ndcg_at_5
945
- value: 35.013
946
- - type: precision_at_1
947
- value: 28.358
948
- - type: precision_at_10
949
- value: 6.418
950
- - type: precision_at_100
951
- value: 1.02
952
- - type: precision_at_1000
953
- value: 0.133
954
- - type: precision_at_3
955
- value: 14.677000000000001
956
- - type: precision_at_5
957
- value: 10.335999999999999
958
- - type: recall_at_1
959
- value: 24.633
960
- - type: recall_at_10
961
- value: 50.048
962
- - type: recall_at_100
963
- value: 73.821
964
- - type: recall_at_1000
965
- value: 90.046
966
- - type: recall_at_3
967
- value: 36.284
968
- - type: recall_at_5
969
- value: 41.370000000000005
970
- - task:
971
- type: Retrieval
972
- dataset:
973
- type: BeIR/cqadupstack
974
- name: MTEB CQADupstackWebmastersRetrieval
975
- config: default
976
- split: test
977
- revision: None
978
- metrics:
979
- - type: map_at_1
980
- value: 23.133
981
- - type: map_at_10
982
- value: 31.491999999999997
983
- - type: map_at_100
984
- value: 33.062000000000005
985
- - type: map_at_1000
986
- value: 33.256
987
- - type: map_at_3
988
- value: 28.886
989
- - type: map_at_5
990
- value: 30.262
991
- - type: mrr_at_1
992
- value: 28.063
993
- - type: mrr_at_10
994
- value: 36.144
995
- - type: mrr_at_100
996
- value: 37.14
997
- - type: mrr_at_1000
998
- value: 37.191
999
- - type: mrr_at_3
1000
- value: 33.762
1001
- - type: mrr_at_5
1002
- value: 34.997
1003
- - type: ndcg_at_1
1004
- value: 28.063
1005
- - type: ndcg_at_10
1006
- value: 36.951
1007
- - type: ndcg_at_100
1008
- value: 43.287
1009
- - type: ndcg_at_1000
1010
- value: 45.777
1011
- - type: ndcg_at_3
1012
- value: 32.786
1013
- - type: ndcg_at_5
1014
- value: 34.65
1015
- - type: precision_at_1
1016
- value: 28.063
1017
- - type: precision_at_10
1018
- value: 7.055
1019
- - type: precision_at_100
1020
- value: 1.476
1021
- - type: precision_at_1000
1022
- value: 0.22899999999999998
1023
- - type: precision_at_3
1024
- value: 15.481
1025
- - type: precision_at_5
1026
- value: 11.186
1027
- - type: recall_at_1
1028
- value: 23.133
1029
- - type: recall_at_10
1030
- value: 47.285
1031
- - type: recall_at_100
1032
- value: 76.176
1033
- - type: recall_at_1000
1034
- value: 92.176
1035
- - type: recall_at_3
1036
- value: 35.223
1037
- - type: recall_at_5
1038
- value: 40.142
1039
- - task:
1040
- type: Retrieval
1041
- dataset:
1042
- type: BeIR/cqadupstack
1043
- name: MTEB CQADupstackWordpressRetrieval
1044
- config: default
1045
- split: test
1046
- revision: None
1047
- metrics:
1048
- - type: map_at_1
1049
- value: 19.547
1050
- - type: map_at_10
1051
- value: 26.374
1052
- - type: map_at_100
1053
- value: 27.419
1054
- - type: map_at_1000
1055
- value: 27.539
1056
- - type: map_at_3
1057
- value: 23.882
1058
- - type: map_at_5
1059
- value: 25.163999999999998
1060
- - type: mrr_at_1
1061
- value: 21.442
1062
- - type: mrr_at_10
1063
- value: 28.458
1064
- - type: mrr_at_100
1065
- value: 29.360999999999997
1066
- - type: mrr_at_1000
1067
- value: 29.448999999999998
1068
- - type: mrr_at_3
1069
- value: 25.97
1070
- - type: mrr_at_5
1071
- value: 27.273999999999997
1072
- - type: ndcg_at_1
1073
- value: 21.442
1074
- - type: ndcg_at_10
1075
- value: 30.897000000000002
1076
- - type: ndcg_at_100
1077
- value: 35.99
1078
- - type: ndcg_at_1000
1079
- value: 38.832
1080
- - type: ndcg_at_3
1081
- value: 25.944
1082
- - type: ndcg_at_5
1083
- value: 28.126
1084
- - type: precision_at_1
1085
- value: 21.442
1086
- - type: precision_at_10
1087
- value: 4.9910000000000005
1088
- - type: precision_at_100
1089
- value: 0.8109999999999999
1090
- - type: precision_at_1000
1091
- value: 0.11800000000000001
1092
- - type: precision_at_3
1093
- value: 11.029
1094
- - type: precision_at_5
1095
- value: 7.911
1096
- - type: recall_at_1
1097
- value: 19.547
1098
- - type: recall_at_10
1099
- value: 42.886
1100
- - type: recall_at_100
1101
- value: 66.64999999999999
1102
- - type: recall_at_1000
1103
- value: 87.368
1104
- - type: recall_at_3
1105
- value: 29.143
1106
- - type: recall_at_5
1107
- value: 34.544000000000004
1108
- - task:
1109
- type: Retrieval
1110
- dataset:
1111
- type: climate-fever
1112
- name: MTEB ClimateFEVER
1113
- config: default
1114
- split: test
1115
- revision: None
1116
- metrics:
1117
- - type: map_at_1
1118
- value: 15.572
1119
- - type: map_at_10
1120
- value: 25.312
1121
- - type: map_at_100
1122
- value: 27.062
1123
- - type: map_at_1000
1124
- value: 27.253
1125
- - type: map_at_3
1126
- value: 21.601
1127
- - type: map_at_5
1128
- value: 23.473
1129
- - type: mrr_at_1
1130
- value: 34.984
1131
- - type: mrr_at_10
1132
- value: 46.406
1133
- - type: mrr_at_100
1134
- value: 47.179
1135
- - type: mrr_at_1000
1136
- value: 47.21
1137
- - type: mrr_at_3
1138
- value: 43.485
1139
- - type: mrr_at_5
1140
- value: 45.322
1141
- - type: ndcg_at_1
1142
- value: 34.984
1143
- - type: ndcg_at_10
1144
- value: 34.344
1145
- - type: ndcg_at_100
1146
- value: 41.015
1147
- - type: ndcg_at_1000
1148
- value: 44.366
1149
- - type: ndcg_at_3
1150
- value: 29.119
1151
- - type: ndcg_at_5
1152
- value: 30.825999999999997
1153
- - type: precision_at_1
1154
- value: 34.984
1155
- - type: precision_at_10
1156
- value: 10.358
1157
- - type: precision_at_100
1158
- value: 1.762
1159
- - type: precision_at_1000
1160
- value: 0.23900000000000002
1161
- - type: precision_at_3
1162
- value: 21.368000000000002
1163
- - type: precision_at_5
1164
- value: 15.948
1165
- - type: recall_at_1
1166
- value: 15.572
1167
- - type: recall_at_10
1168
- value: 39.367999999999995
1169
- - type: recall_at_100
1170
- value: 62.183
1171
- - type: recall_at_1000
1172
- value: 80.92200000000001
1173
- - type: recall_at_3
1174
- value: 26.131999999999998
1175
- - type: recall_at_5
1176
- value: 31.635999999999996
1177
- - task:
1178
- type: Retrieval
1179
- dataset:
1180
- type: dbpedia-entity
1181
- name: MTEB DBPedia
1182
- config: default
1183
- split: test
1184
- revision: None
1185
- metrics:
1186
- - type: map_at_1
1187
- value: 8.848
1188
- - type: map_at_10
1189
- value: 19.25
1190
- - type: map_at_100
1191
- value: 27.193
1192
- - type: map_at_1000
1193
- value: 28.721999999999998
1194
- - type: map_at_3
1195
- value: 13.968
1196
- - type: map_at_5
1197
- value: 16.283
1198
- - type: mrr_at_1
1199
- value: 68.75
1200
- - type: mrr_at_10
1201
- value: 76.25
1202
- - type: mrr_at_100
1203
- value: 76.534
1204
- - type: mrr_at_1000
1205
- value: 76.53999999999999
1206
- - type: mrr_at_3
1207
- value: 74.667
1208
- - type: mrr_at_5
1209
- value: 75.86699999999999
1210
- - type: ndcg_at_1
1211
- value: 56.00000000000001
1212
- - type: ndcg_at_10
1213
- value: 41.426
1214
- - type: ndcg_at_100
1215
- value: 45.660000000000004
1216
- - type: ndcg_at_1000
1217
- value: 53.02
1218
- - type: ndcg_at_3
1219
- value: 46.581
1220
- - type: ndcg_at_5
1221
- value: 43.836999999999996
1222
- - type: precision_at_1
1223
- value: 68.75
1224
- - type: precision_at_10
1225
- value: 32.800000000000004
1226
- - type: precision_at_100
1227
- value: 10.440000000000001
1228
- - type: precision_at_1000
1229
- value: 1.9980000000000002
1230
- - type: precision_at_3
1231
- value: 49.667
1232
- - type: precision_at_5
1233
- value: 42.25
1234
- - type: recall_at_1
1235
- value: 8.848
1236
- - type: recall_at_10
1237
- value: 24.467
1238
- - type: recall_at_100
1239
- value: 51.344
1240
- - type: recall_at_1000
1241
- value: 75.235
1242
- - type: recall_at_3
1243
- value: 15.329
1244
- - type: recall_at_5
1245
- value: 18.892999999999997
1246
- - task:
1247
- type: Classification
1248
- dataset:
1249
- type: mteb/emotion
1250
- name: MTEB EmotionClassification
1251
- config: default
1252
- split: test
1253
- revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1254
- metrics:
1255
- - type: accuracy
1256
- value: 48.95
1257
- - type: f1
1258
- value: 43.44563593360779
1259
- - task:
1260
- type: Retrieval
1261
- dataset:
1262
- type: fever
1263
- name: MTEB FEVER
1264
- config: default
1265
- split: test
1266
- revision: None
1267
- metrics:
1268
- - type: map_at_1
1269
- value: 78.036
1270
- - type: map_at_10
1271
- value: 85.639
1272
- - type: map_at_100
1273
- value: 85.815
1274
- - type: map_at_1000
1275
- value: 85.829
1276
- - type: map_at_3
1277
- value: 84.795
1278
- - type: map_at_5
1279
- value: 85.336
1280
- - type: mrr_at_1
1281
- value: 84.353
1282
- - type: mrr_at_10
1283
- value: 90.582
1284
- - type: mrr_at_100
1285
- value: 90.617
1286
- - type: mrr_at_1000
1287
- value: 90.617
1288
- - type: mrr_at_3
1289
- value: 90.132
1290
- - type: mrr_at_5
1291
- value: 90.447
1292
- - type: ndcg_at_1
1293
- value: 84.353
1294
- - type: ndcg_at_10
1295
- value: 89.003
1296
- - type: ndcg_at_100
1297
- value: 89.60000000000001
1298
- - type: ndcg_at_1000
1299
- value: 89.836
1300
- - type: ndcg_at_3
1301
- value: 87.81400000000001
1302
- - type: ndcg_at_5
1303
- value: 88.478
1304
- - type: precision_at_1
1305
- value: 84.353
1306
- - type: precision_at_10
1307
- value: 10.482
1308
- - type: precision_at_100
1309
- value: 1.099
1310
- - type: precision_at_1000
1311
- value: 0.11399999999999999
1312
- - type: precision_at_3
1313
- value: 33.257999999999996
1314
- - type: precision_at_5
1315
- value: 20.465
1316
- - type: recall_at_1
1317
- value: 78.036
1318
- - type: recall_at_10
1319
- value: 94.517
1320
- - type: recall_at_100
1321
- value: 96.828
1322
- - type: recall_at_1000
1323
- value: 98.261
1324
- - type: recall_at_3
1325
- value: 91.12
1326
- - type: recall_at_5
1327
- value: 92.946
1328
- - task:
1329
- type: Retrieval
1330
- dataset:
1331
- type: fiqa
1332
- name: MTEB FiQA2018
1333
- config: default
1334
- split: test
1335
- revision: None
1336
- metrics:
1337
- - type: map_at_1
1338
- value: 20.191
1339
- - type: map_at_10
1340
- value: 32.369
1341
- - type: map_at_100
1342
- value: 34.123999999999995
1343
- - type: map_at_1000
1344
- value: 34.317
1345
- - type: map_at_3
1346
- value: 28.71
1347
- - type: map_at_5
1348
- value: 30.607
1349
- - type: mrr_at_1
1350
- value: 40.894999999999996
1351
- - type: mrr_at_10
1352
- value: 48.842
1353
- - type: mrr_at_100
1354
- value: 49.599
1355
- - type: mrr_at_1000
1356
- value: 49.647000000000006
1357
- - type: mrr_at_3
1358
- value: 46.785
1359
- - type: mrr_at_5
1360
- value: 47.672
1361
- - type: ndcg_at_1
1362
- value: 40.894999999999996
1363
- - type: ndcg_at_10
1364
- value: 39.872
1365
- - type: ndcg_at_100
1366
- value: 46.126
1367
- - type: ndcg_at_1000
1368
- value: 49.476
1369
- - type: ndcg_at_3
1370
- value: 37.153000000000006
1371
- - type: ndcg_at_5
1372
- value: 37.433
1373
- - type: precision_at_1
1374
- value: 40.894999999999996
1375
- - type: precision_at_10
1376
- value: 10.818
1377
- - type: precision_at_100
1378
- value: 1.73
1379
- - type: precision_at_1000
1380
- value: 0.231
1381
- - type: precision_at_3
1382
- value: 25.051000000000002
1383
- - type: precision_at_5
1384
- value: 17.531
1385
- - type: recall_at_1
1386
- value: 20.191
1387
- - type: recall_at_10
1388
- value: 45.768
1389
- - type: recall_at_100
1390
- value: 68.82000000000001
1391
- - type: recall_at_1000
1392
- value: 89.133
1393
- - type: recall_at_3
1394
- value: 33.296
1395
- - type: recall_at_5
1396
- value: 38.022
1397
- - task:
1398
- type: Retrieval
1399
- dataset:
1400
- type: hotpotqa
1401
- name: MTEB HotpotQA
1402
- config: default
1403
- split: test
1404
- revision: None
1405
- metrics:
1406
- - type: map_at_1
1407
- value: 39.257
1408
- - type: map_at_10
1409
- value: 61.467000000000006
1410
- - type: map_at_100
1411
- value: 62.364
1412
- - type: map_at_1000
1413
- value: 62.424
1414
- - type: map_at_3
1415
- value: 58.228
1416
- - type: map_at_5
1417
- value: 60.283
1418
- - type: mrr_at_1
1419
- value: 78.515
1420
- - type: mrr_at_10
1421
- value: 84.191
1422
- - type: mrr_at_100
1423
- value: 84.378
1424
- - type: mrr_at_1000
1425
- value: 84.385
1426
- - type: mrr_at_3
1427
- value: 83.284
1428
- - type: mrr_at_5
1429
- value: 83.856
1430
- - type: ndcg_at_1
1431
- value: 78.515
1432
- - type: ndcg_at_10
1433
- value: 69.78999999999999
1434
- - type: ndcg_at_100
1435
- value: 72.886
1436
- - type: ndcg_at_1000
1437
- value: 74.015
1438
- - type: ndcg_at_3
1439
- value: 65.23
1440
- - type: ndcg_at_5
1441
- value: 67.80199999999999
1442
- - type: precision_at_1
1443
- value: 78.515
1444
- - type: precision_at_10
1445
- value: 14.519000000000002
1446
- - type: precision_at_100
1447
- value: 1.694
1448
- - type: precision_at_1000
1449
- value: 0.184
1450
- - type: precision_at_3
1451
- value: 41.702
1452
- - type: precision_at_5
1453
- value: 27.046999999999997
1454
- - type: recall_at_1
1455
- value: 39.257
1456
- - type: recall_at_10
1457
- value: 72.59299999999999
1458
- - type: recall_at_100
1459
- value: 84.679
1460
- - type: recall_at_1000
1461
- value: 92.12
1462
- - type: recall_at_3
1463
- value: 62.552
1464
- - type: recall_at_5
1465
- value: 67.616
1466
- - task:
1467
- type: Classification
1468
- dataset:
1469
- type: mteb/imdb
1470
- name: MTEB ImdbClassification
1471
- config: default
1472
- split: test
1473
- revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1474
- metrics:
1475
- - type: accuracy
1476
- value: 91.5152
1477
- - type: ap
1478
- value: 87.64584669595709
1479
- - type: f1
1480
- value: 91.50605576428437
1481
- - task:
1482
- type: Retrieval
1483
- dataset:
1484
- type: msmarco
1485
- name: MTEB MSMARCO
1486
- config: default
1487
- split: dev
1488
- revision: None
1489
- metrics:
1490
- - type: map_at_1
1491
- value: 21.926000000000002
1492
- - type: map_at_10
1493
- value: 34.049
1494
- - type: map_at_100
1495
- value: 35.213
1496
- - type: map_at_1000
1497
- value: 35.265
1498
- - type: map_at_3
1499
- value: 30.309
1500
- - type: map_at_5
1501
- value: 32.407000000000004
1502
- - type: mrr_at_1
1503
- value: 22.55
1504
- - type: mrr_at_10
1505
- value: 34.657
1506
- - type: mrr_at_100
1507
- value: 35.760999999999996
1508
- - type: mrr_at_1000
1509
- value: 35.807
1510
- - type: mrr_at_3
1511
- value: 30.989
1512
- - type: mrr_at_5
1513
- value: 33.039
1514
- - type: ndcg_at_1
1515
- value: 22.55
1516
- - type: ndcg_at_10
1517
- value: 40.842
1518
- - type: ndcg_at_100
1519
- value: 46.436
1520
- - type: ndcg_at_1000
1521
- value: 47.721999999999994
1522
- - type: ndcg_at_3
1523
- value: 33.209
1524
- - type: ndcg_at_5
1525
- value: 36.943
1526
- - type: precision_at_1
1527
- value: 22.55
1528
- - type: precision_at_10
1529
- value: 6.447
1530
- - type: precision_at_100
1531
- value: 0.9249999999999999
1532
- - type: precision_at_1000
1533
- value: 0.104
1534
- - type: precision_at_3
1535
- value: 14.136000000000001
1536
- - type: precision_at_5
1537
- value: 10.381
1538
- - type: recall_at_1
1539
- value: 21.926000000000002
1540
- - type: recall_at_10
1541
- value: 61.724999999999994
1542
- - type: recall_at_100
1543
- value: 87.604
1544
- - type: recall_at_1000
1545
- value: 97.421
1546
- - type: recall_at_3
1547
- value: 40.944
1548
- - type: recall_at_5
1549
- value: 49.915
1550
- - task:
1551
- type: Classification
1552
- dataset:
1553
- type: mteb/mtop_domain
1554
- name: MTEB MTOPDomainClassification (en)
1555
- config: en
1556
- split: test
1557
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1558
- metrics:
1559
- - type: accuracy
1560
- value: 93.54765161878704
1561
- - type: f1
1562
- value: 93.3298945415573
1563
- - task:
1564
- type: Classification
1565
- dataset:
1566
- type: mteb/mtop_intent
1567
- name: MTEB MTOPIntentClassification (en)
1568
- config: en
1569
- split: test
1570
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1571
- metrics:
1572
- - type: accuracy
1573
- value: 75.71591427268582
1574
- - type: f1
1575
- value: 59.32113870474471
1576
- - task:
1577
- type: Classification
1578
- dataset:
1579
- type: mteb/amazon_massive_intent
1580
- name: MTEB MassiveIntentClassification (en)
1581
- config: en
1582
- split: test
1583
- revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1584
- metrics:
1585
- - type: accuracy
1586
- value: 75.83053127101547
1587
- - type: f1
1588
- value: 73.60757944876475
1589
- - task:
1590
- type: Classification
1591
- dataset:
1592
- type: mteb/amazon_massive_scenario
1593
- name: MTEB MassiveScenarioClassification (en)
1594
- config: en
1595
- split: test
1596
- revision: 7d571f92784cd94a019292a1f45445077d0ef634
1597
- metrics:
1598
- - type: accuracy
1599
- value: 78.72562205783457
1600
- - type: f1
1601
- value: 78.63761662505502
1602
- - task:
1603
- type: Clustering
1604
- dataset:
1605
- type: mteb/medrxiv-clustering-p2p
1606
- name: MTEB MedrxivClusteringP2P
1607
- config: default
1608
- split: test
1609
- revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1610
- metrics:
1611
- - type: v_measure
1612
- value: 33.37935633767996
1613
- - task:
1614
- type: Clustering
1615
- dataset:
1616
- type: mteb/medrxiv-clustering-s2s
1617
- name: MTEB MedrxivClusteringS2S
1618
- config: default
1619
- split: test
1620
- revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1621
- metrics:
1622
- - type: v_measure
1623
- value: 31.55270546130387
1624
- - task:
1625
- type: Reranking
1626
- dataset:
1627
- type: mteb/mind_small
1628
- name: MTEB MindSmallReranking
1629
- config: default
1630
- split: test
1631
- revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1632
- metrics:
1633
- - type: map
1634
- value: 30.462692753143834
1635
- - type: mrr
1636
- value: 31.497569753511563
1637
- - task:
1638
- type: Retrieval
1639
- dataset:
1640
- type: nfcorpus
1641
- name: MTEB NFCorpus
1642
- config: default
1643
- split: test
1644
- revision: None
1645
- metrics:
1646
- - type: map_at_1
1647
- value: 5.646
1648
- - type: map_at_10
1649
- value: 12.498
1650
- - type: map_at_100
1651
- value: 15.486
1652
- - type: map_at_1000
1653
- value: 16.805999999999997
1654
- - type: map_at_3
1655
- value: 9.325
1656
- - type: map_at_5
1657
- value: 10.751
1658
- - type: mrr_at_1
1659
- value: 43.034
1660
- - type: mrr_at_10
1661
- value: 52.662
1662
- - type: mrr_at_100
1663
- value: 53.189
1664
- - type: mrr_at_1000
1665
- value: 53.25
1666
- - type: mrr_at_3
1667
- value: 50.929
1668
- - type: mrr_at_5
1669
- value: 51.92
1670
- - type: ndcg_at_1
1671
- value: 41.796
1672
- - type: ndcg_at_10
1673
- value: 33.477000000000004
1674
- - type: ndcg_at_100
1675
- value: 29.996000000000002
1676
- - type: ndcg_at_1000
1677
- value: 38.864
1678
- - type: ndcg_at_3
1679
- value: 38.940000000000005
1680
- - type: ndcg_at_5
1681
- value: 36.689
1682
- - type: precision_at_1
1683
- value: 43.034
1684
- - type: precision_at_10
1685
- value: 24.799
1686
- - type: precision_at_100
1687
- value: 7.432999999999999
1688
- - type: precision_at_1000
1689
- value: 1.9929999999999999
1690
- - type: precision_at_3
1691
- value: 36.842000000000006
1692
- - type: precision_at_5
1693
- value: 32.135999999999996
1694
- - type: recall_at_1
1695
- value: 5.646
1696
- - type: recall_at_10
1697
- value: 15.963
1698
- - type: recall_at_100
1699
- value: 29.492
1700
- - type: recall_at_1000
1701
- value: 61.711000000000006
1702
- - type: recall_at_3
1703
- value: 10.585
1704
- - type: recall_at_5
1705
- value: 12.753999999999998
1706
- - task:
1707
- type: Retrieval
1708
- dataset:
1709
- type: nq
1710
- name: MTEB NQ
1711
- config: default
1712
- split: test
1713
- revision: None
1714
- metrics:
1715
- - type: map_at_1
1716
- value: 27.602
1717
- - type: map_at_10
1718
- value: 41.545
1719
- - type: map_at_100
1720
- value: 42.644999999999996
1721
- - type: map_at_1000
1722
- value: 42.685
1723
- - type: map_at_3
1724
- value: 37.261
1725
- - type: map_at_5
1726
- value: 39.706
1727
- - type: mrr_at_1
1728
- value: 31.141000000000002
1729
- - type: mrr_at_10
1730
- value: 44.139
1731
- - type: mrr_at_100
1732
- value: 44.997
1733
- - type: mrr_at_1000
1734
- value: 45.025999999999996
1735
- - type: mrr_at_3
1736
- value: 40.503
1737
- - type: mrr_at_5
1738
- value: 42.64
1739
- - type: ndcg_at_1
1740
- value: 31.141000000000002
1741
- - type: ndcg_at_10
1742
- value: 48.995
1743
- - type: ndcg_at_100
1744
- value: 53.788000000000004
1745
- - type: ndcg_at_1000
1746
- value: 54.730000000000004
1747
- - type: ndcg_at_3
1748
- value: 40.844
1749
- - type: ndcg_at_5
1750
- value: 44.955
1751
- - type: precision_at_1
1752
- value: 31.141000000000002
1753
- - type: precision_at_10
1754
- value: 8.233
1755
- - type: precision_at_100
1756
- value: 1.093
1757
- - type: precision_at_1000
1758
- value: 0.11800000000000001
1759
- - type: precision_at_3
1760
- value: 18.579
1761
- - type: precision_at_5
1762
- value: 13.533999999999999
1763
- - type: recall_at_1
1764
- value: 27.602
1765
- - type: recall_at_10
1766
- value: 69.216
1767
- - type: recall_at_100
1768
- value: 90.252
1769
- - type: recall_at_1000
1770
- value: 97.27
1771
- - type: recall_at_3
1772
- value: 47.987
1773
- - type: recall_at_5
1774
- value: 57.438
1775
- - task:
1776
- type: Retrieval
1777
- dataset:
1778
- type: quora
1779
- name: MTEB QuoraRetrieval
1780
- config: default
1781
- split: test
1782
- revision: None
1783
- metrics:
1784
- - type: map_at_1
1785
- value: 70.949
1786
- - type: map_at_10
1787
- value: 84.89999999999999
1788
- - type: map_at_100
1789
- value: 85.531
1790
- - type: map_at_1000
1791
- value: 85.548
1792
- - type: map_at_3
1793
- value: 82.027
1794
- - type: map_at_5
1795
- value: 83.853
1796
- - type: mrr_at_1
1797
- value: 81.69999999999999
1798
- - type: mrr_at_10
1799
- value: 87.813
1800
- - type: mrr_at_100
1801
- value: 87.917
1802
- - type: mrr_at_1000
1803
- value: 87.91799999999999
1804
- - type: mrr_at_3
1805
- value: 86.938
1806
- - type: mrr_at_5
1807
- value: 87.53999999999999
1808
- - type: ndcg_at_1
1809
- value: 81.75
1810
- - type: ndcg_at_10
1811
- value: 88.55499999999999
1812
- - type: ndcg_at_100
1813
- value: 89.765
1814
- - type: ndcg_at_1000
1815
- value: 89.871
1816
- - type: ndcg_at_3
1817
- value: 85.905
1818
- - type: ndcg_at_5
1819
- value: 87.41
1820
- - type: precision_at_1
1821
- value: 81.75
1822
- - type: precision_at_10
1823
- value: 13.403
1824
- - type: precision_at_100
1825
- value: 1.528
1826
- - type: precision_at_1000
1827
- value: 0.157
1828
- - type: precision_at_3
1829
- value: 37.597
1830
- - type: precision_at_5
1831
- value: 24.69
1832
- - type: recall_at_1
1833
- value: 70.949
1834
- - type: recall_at_10
1835
- value: 95.423
1836
- - type: recall_at_100
1837
- value: 99.509
1838
- - type: recall_at_1000
1839
- value: 99.982
1840
- - type: recall_at_3
1841
- value: 87.717
1842
- - type: recall_at_5
1843
- value: 92.032
1844
- - task:
1845
- type: Clustering
1846
- dataset:
1847
- type: mteb/reddit-clustering
1848
- name: MTEB RedditClustering
1849
- config: default
1850
- split: test
1851
- revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1852
- metrics:
1853
- - type: v_measure
1854
- value: 51.76962893449579
1855
- - task:
1856
- type: Clustering
1857
- dataset:
1858
- type: mteb/reddit-clustering-p2p
1859
- name: MTEB RedditClusteringP2P
1860
- config: default
1861
- split: test
1862
- revision: 282350215ef01743dc01b456c7f5241fa8937f16
1863
- metrics:
1864
- - type: v_measure
1865
- value: 62.32897690686379
1866
- - task:
1867
- type: Retrieval
1868
- dataset:
1869
- type: scidocs
1870
- name: MTEB SCIDOCS
1871
- config: default
1872
- split: test
1873
- revision: None
1874
- metrics:
1875
- - type: map_at_1
1876
- value: 4.478
1877
- - type: map_at_10
1878
- value: 11.994
1879
- - type: map_at_100
1880
- value: 13.977
1881
- - type: map_at_1000
1882
- value: 14.295
1883
- - type: map_at_3
1884
- value: 8.408999999999999
1885
- - type: map_at_5
1886
- value: 10.024
1887
- - type: mrr_at_1
1888
- value: 22.1
1889
- - type: mrr_at_10
1890
- value: 33.526
1891
- - type: mrr_at_100
1892
- value: 34.577000000000005
1893
- - type: mrr_at_1000
1894
- value: 34.632000000000005
1895
- - type: mrr_at_3
1896
- value: 30.217
1897
- - type: mrr_at_5
1898
- value: 31.962000000000003
1899
- - type: ndcg_at_1
1900
- value: 22.1
1901
- - type: ndcg_at_10
1902
- value: 20.191
1903
- - type: ndcg_at_100
1904
- value: 27.954
1905
- - type: ndcg_at_1000
1906
- value: 33.491
1907
- - type: ndcg_at_3
1908
- value: 18.787000000000003
1909
- - type: ndcg_at_5
1910
- value: 16.378999999999998
1911
- - type: precision_at_1
1912
- value: 22.1
1913
- - type: precision_at_10
1914
- value: 10.69
1915
- - type: precision_at_100
1916
- value: 2.1919999999999997
1917
- - type: precision_at_1000
1918
- value: 0.35200000000000004
1919
- - type: precision_at_3
1920
- value: 17.732999999999997
1921
- - type: precision_at_5
1922
- value: 14.499999999999998
1923
- - type: recall_at_1
1924
- value: 4.478
1925
- - type: recall_at_10
1926
- value: 21.657
1927
- - type: recall_at_100
1928
- value: 44.54
1929
- - type: recall_at_1000
1930
- value: 71.542
1931
- - type: recall_at_3
1932
- value: 10.778
1933
- - type: recall_at_5
1934
- value: 14.687
1935
- - task:
1936
- type: STS
1937
- dataset:
1938
- type: mteb/sickr-sts
1939
- name: MTEB SICK-R
1940
- config: default
1941
- split: test
1942
- revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1943
- metrics:
1944
- - type: cos_sim_pearson
1945
- value: 82.82325259156718
1946
- - type: cos_sim_spearman
1947
- value: 79.2463589100662
1948
- - type: euclidean_pearson
1949
- value: 80.48318380496771
1950
- - type: euclidean_spearman
1951
- value: 79.34451935199979
1952
- - type: manhattan_pearson
1953
- value: 80.39041824178759
1954
- - type: manhattan_spearman
1955
- value: 79.23002892700211
1956
- - task:
1957
- type: STS
1958
- dataset:
1959
- type: mteb/sts12-sts
1960
- name: MTEB STS12
1961
- config: default
1962
- split: test
1963
- revision: a0d554a64d88156834ff5ae9920b964011b16384
1964
- metrics:
1965
- - type: cos_sim_pearson
1966
- value: 85.74130231431258
1967
- - type: cos_sim_spearman
1968
- value: 78.36856568042397
1969
- - type: euclidean_pearson
1970
- value: 82.48301631890303
1971
- - type: euclidean_spearman
1972
- value: 78.28376980722732
1973
- - type: manhattan_pearson
1974
- value: 82.43552075450525
1975
- - type: manhattan_spearman
1976
- value: 78.22702443947126
1977
- - task:
1978
- type: STS
1979
- dataset:
1980
- type: mteb/sts13-sts
1981
- name: MTEB STS13
1982
- config: default
1983
- split: test
1984
- revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1985
- metrics:
1986
- - type: cos_sim_pearson
1987
- value: 79.96138619461459
1988
- - type: cos_sim_spearman
1989
- value: 81.85436343502379
1990
- - type: euclidean_pearson
1991
- value: 81.82895226665367
1992
- - type: euclidean_spearman
1993
- value: 82.22707349602916
1994
- - type: manhattan_pearson
1995
- value: 81.66303369445873
1996
- - type: manhattan_spearman
1997
- value: 82.05030197179455
1998
- - task:
1999
- type: STS
2000
- dataset:
2001
- type: mteb/sts14-sts
2002
- name: MTEB STS14
2003
- config: default
2004
- split: test
2005
- revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2006
- metrics:
2007
- - type: cos_sim_pearson
2008
- value: 80.05481244198648
2009
- - type: cos_sim_spearman
2010
- value: 80.85052504637808
2011
- - type: euclidean_pearson
2012
- value: 80.86728419744497
2013
- - type: euclidean_spearman
2014
- value: 81.033786401512
2015
- - type: manhattan_pearson
2016
- value: 80.90107531061103
2017
- - type: manhattan_spearman
2018
- value: 81.11374116827795
2019
- - task:
2020
- type: STS
2021
- dataset:
2022
- type: mteb/sts15-sts
2023
- name: MTEB STS15
2024
- config: default
2025
- split: test
2026
- revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2027
- metrics:
2028
- - type: cos_sim_pearson
2029
- value: 84.615220756399
2030
- - type: cos_sim_spearman
2031
- value: 86.46858500002092
2032
- - type: euclidean_pearson
2033
- value: 86.08307800247586
2034
- - type: euclidean_spearman
2035
- value: 86.72691443870013
2036
- - type: manhattan_pearson
2037
- value: 85.96155594487269
2038
- - type: manhattan_spearman
2039
- value: 86.605909505275
2040
- - task:
2041
- type: STS
2042
- dataset:
2043
- type: mteb/sts16-sts
2044
- name: MTEB STS16
2045
- config: default
2046
- split: test
2047
- revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2048
- metrics:
2049
- - type: cos_sim_pearson
2050
- value: 82.14363913634436
2051
- - type: cos_sim_spearman
2052
- value: 84.48430226487102
2053
- - type: euclidean_pearson
2054
- value: 83.75303424801902
2055
- - type: euclidean_spearman
2056
- value: 84.56762380734538
2057
- - type: manhattan_pearson
2058
- value: 83.6135447165928
2059
- - type: manhattan_spearman
2060
- value: 84.39898212616731
2061
- - task:
2062
- type: STS
2063
- dataset:
2064
- type: mteb/sts17-crosslingual-sts
2065
- name: MTEB STS17 (en-en)
2066
- config: en-en
2067
- split: test
2068
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2069
- metrics:
2070
- - type: cos_sim_pearson
2071
- value: 85.09909252554525
2072
- - type: cos_sim_spearman
2073
- value: 85.70951402743276
2074
- - type: euclidean_pearson
2075
- value: 87.1991936239908
2076
- - type: euclidean_spearman
2077
- value: 86.07745840612071
2078
- - type: manhattan_pearson
2079
- value: 87.25039137549952
2080
- - type: manhattan_spearman
2081
- value: 85.99938746659761
2082
- - task:
2083
- type: STS
2084
- dataset:
2085
- type: mteb/sts22-crosslingual-sts
2086
- name: MTEB STS22 (en)
2087
- config: en
2088
- split: test
2089
- revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2090
- metrics:
2091
- - type: cos_sim_pearson
2092
- value: 63.529332093413615
2093
- - type: cos_sim_spearman
2094
- value: 65.38177340147439
2095
- - type: euclidean_pearson
2096
- value: 66.35278011412136
2097
- - type: euclidean_spearman
2098
- value: 65.47147267032997
2099
- - type: manhattan_pearson
2100
- value: 66.71804682408693
2101
- - type: manhattan_spearman
2102
- value: 65.67406521423597
2103
- - task:
2104
- type: STS
2105
- dataset:
2106
- type: mteb/stsbenchmark-sts
2107
- name: MTEB STSBenchmark
2108
- config: default
2109
- split: test
2110
- revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2111
- metrics:
2112
- - type: cos_sim_pearson
2113
- value: 82.45802942885662
2114
- - type: cos_sim_spearman
2115
- value: 84.8853341842566
2116
- - type: euclidean_pearson
2117
- value: 84.60915021096707
2118
- - type: euclidean_spearman
2119
- value: 85.11181242913666
2120
- - type: manhattan_pearson
2121
- value: 84.38600521210364
2122
- - type: manhattan_spearman
2123
- value: 84.89045417981723
2124
- - task:
2125
- type: Reranking
2126
- dataset:
2127
- type: mteb/scidocs-reranking
2128
- name: MTEB SciDocsRR
2129
- config: default
2130
- split: test
2131
- revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2132
- metrics:
2133
- - type: map
2134
- value: 85.92793380635129
2135
- - type: mrr
2136
- value: 95.85834191226348
2137
- - task:
2138
- type: Retrieval
2139
- dataset:
2140
- type: scifact
2141
- name: MTEB SciFact
2142
- config: default
2143
- split: test
2144
- revision: None
2145
- metrics:
2146
- - type: map_at_1
2147
- value: 55.74400000000001
2148
- - type: map_at_10
2149
- value: 65.455
2150
- - type: map_at_100
2151
- value: 66.106
2152
- - type: map_at_1000
2153
- value: 66.129
2154
- - type: map_at_3
2155
- value: 62.719
2156
- - type: map_at_5
2157
- value: 64.441
2158
- - type: mrr_at_1
2159
- value: 58.667
2160
- - type: mrr_at_10
2161
- value: 66.776
2162
- - type: mrr_at_100
2163
- value: 67.363
2164
- - type: mrr_at_1000
2165
- value: 67.384
2166
- - type: mrr_at_3
2167
- value: 64.889
2168
- - type: mrr_at_5
2169
- value: 66.122
2170
- - type: ndcg_at_1
2171
- value: 58.667
2172
- - type: ndcg_at_10
2173
- value: 69.904
2174
- - type: ndcg_at_100
2175
- value: 72.807
2176
- - type: ndcg_at_1000
2177
- value: 73.423
2178
- - type: ndcg_at_3
2179
- value: 65.405
2180
- - type: ndcg_at_5
2181
- value: 67.86999999999999
2182
- - type: precision_at_1
2183
- value: 58.667
2184
- - type: precision_at_10
2185
- value: 9.3
2186
- - type: precision_at_100
2187
- value: 1.08
2188
- - type: precision_at_1000
2189
- value: 0.11299999999999999
2190
- - type: precision_at_3
2191
- value: 25.444
2192
- - type: precision_at_5
2193
- value: 17
2194
- - type: recall_at_1
2195
- value: 55.74400000000001
2196
- - type: recall_at_10
2197
- value: 82.122
2198
- - type: recall_at_100
2199
- value: 95.167
2200
- - type: recall_at_1000
2201
- value: 100
2202
- - type: recall_at_3
2203
- value: 70.14399999999999
2204
- - type: recall_at_5
2205
- value: 76.417
2206
- - task:
2207
- type: PairClassification
2208
- dataset:
2209
- type: mteb/sprintduplicatequestions-pairclassification
2210
- name: MTEB SprintDuplicateQuestions
2211
- config: default
2212
- split: test
2213
- revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2214
- metrics:
2215
- - type: cos_sim_accuracy
2216
- value: 99.86534653465347
2217
- - type: cos_sim_ap
2218
- value: 96.54142419791388
2219
- - type: cos_sim_f1
2220
- value: 93.07535641547861
2221
- - type: cos_sim_precision
2222
- value: 94.81327800829875
2223
- - type: cos_sim_recall
2224
- value: 91.4
2225
- - type: dot_accuracy
2226
- value: 99.86435643564356
2227
- - type: dot_ap
2228
- value: 96.53682260449868
2229
- - type: dot_f1
2230
- value: 92.98515104966718
2231
- - type: dot_precision
2232
- value: 95.27806925498426
2233
- - type: dot_recall
2234
- value: 90.8
2235
- - type: euclidean_accuracy
2236
- value: 99.86336633663366
2237
- - type: euclidean_ap
2238
- value: 96.5228676185697
2239
- - type: euclidean_f1
2240
- value: 92.9735234215886
2241
- - type: euclidean_precision
2242
- value: 94.70954356846472
2243
- - type: euclidean_recall
2244
- value: 91.3
2245
- - type: manhattan_accuracy
2246
- value: 99.85841584158416
2247
- - type: manhattan_ap
2248
- value: 96.50392760934032
2249
- - type: manhattan_f1
2250
- value: 92.84642321160581
2251
- - type: manhattan_precision
2252
- value: 92.8928928928929
2253
- - type: manhattan_recall
2254
- value: 92.80000000000001
2255
- - type: max_accuracy
2256
- value: 99.86534653465347
2257
- - type: max_ap
2258
- value: 96.54142419791388
2259
- - type: max_f1
2260
- value: 93.07535641547861
2261
- - task:
2262
- type: Clustering
2263
- dataset:
2264
- type: mteb/stackexchange-clustering
2265
- name: MTEB StackExchangeClustering
2266
- config: default
2267
- split: test
2268
- revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2269
- metrics:
2270
- - type: v_measure
2271
- value: 61.08285408766616
2272
- - task:
2273
- type: Clustering
2274
- dataset:
2275
- type: mteb/stackexchange-clustering-p2p
2276
- name: MTEB StackExchangeClusteringP2P
2277
- config: default
2278
- split: test
2279
- revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2280
- metrics:
2281
- - type: v_measure
2282
- value: 35.640675309010604
2283
- - task:
2284
- type: Reranking
2285
- dataset:
2286
- type: mteb/stackoverflowdupquestions-reranking
2287
- name: MTEB StackOverflowDupQuestions
2288
- config: default
2289
- split: test
2290
- revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2291
- metrics:
2292
- - type: map
2293
- value: 53.20333913710715
2294
- - type: mrr
2295
- value: 54.088813555725324
2296
- - task:
2297
- type: Summarization
2298
- dataset:
2299
- type: mteb/summeval
2300
- name: MTEB SummEval
2301
- config: default
2302
- split: test
2303
- revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2304
- metrics:
2305
- - type: cos_sim_pearson
2306
- value: 30.79465221925075
2307
- - type: cos_sim_spearman
2308
- value: 30.530816059163634
2309
- - type: dot_pearson
2310
- value: 31.364837244718043
2311
- - type: dot_spearman
2312
- value: 30.79726823684003
2313
- - task:
2314
- type: Retrieval
2315
- dataset:
2316
- type: trec-covid
2317
- name: MTEB TRECCOVID
2318
- config: default
2319
- split: test
2320
- revision: None
2321
- metrics:
2322
- - type: map_at_1
2323
- value: 0.22599999999999998
2324
- - type: map_at_10
2325
- value: 1.735
2326
- - type: map_at_100
2327
- value: 8.978
2328
- - type: map_at_1000
2329
- value: 20.851
2330
- - type: map_at_3
2331
- value: 0.613
2332
- - type: map_at_5
2333
- value: 0.964
2334
- - type: mrr_at_1
2335
- value: 88
2336
- - type: mrr_at_10
2337
- value: 92.867
2338
- - type: mrr_at_100
2339
- value: 92.867
2340
- - type: mrr_at_1000
2341
- value: 92.867
2342
- - type: mrr_at_3
2343
- value: 92.667
2344
- - type: mrr_at_5
2345
- value: 92.667
2346
- - type: ndcg_at_1
2347
- value: 82
2348
- - type: ndcg_at_10
2349
- value: 73.164
2350
- - type: ndcg_at_100
2351
- value: 51.878
2352
- - type: ndcg_at_1000
2353
- value: 44.864
2354
- - type: ndcg_at_3
2355
- value: 79.184
2356
- - type: ndcg_at_5
2357
- value: 76.39
2358
- - type: precision_at_1
2359
- value: 88
2360
- - type: precision_at_10
2361
- value: 76.2
2362
- - type: precision_at_100
2363
- value: 52.459999999999994
2364
- - type: precision_at_1000
2365
- value: 19.692
2366
- - type: precision_at_3
2367
- value: 82.667
2368
- - type: precision_at_5
2369
- value: 80
2370
- - type: recall_at_1
2371
- value: 0.22599999999999998
2372
- - type: recall_at_10
2373
- value: 1.942
2374
- - type: recall_at_100
2375
- value: 12.342
2376
- - type: recall_at_1000
2377
- value: 41.42
2378
- - type: recall_at_3
2379
- value: 0.637
2380
- - type: recall_at_5
2381
- value: 1.034
2382
- - task:
2383
- type: Retrieval
2384
- dataset:
2385
- type: webis-touche2020
2386
- name: MTEB Touche2020
2387
- config: default
2388
- split: test
2389
- revision: None
2390
- metrics:
2391
- - type: map_at_1
2392
- value: 3.567
2393
- - type: map_at_10
2394
- value: 13.116
2395
- - type: map_at_100
2396
- value: 19.39
2397
- - type: map_at_1000
2398
- value: 20.988
2399
- - type: map_at_3
2400
- value: 7.109
2401
- - type: map_at_5
2402
- value: 9.950000000000001
2403
- - type: mrr_at_1
2404
- value: 42.857
2405
- - type: mrr_at_10
2406
- value: 57.404999999999994
2407
- - type: mrr_at_100
2408
- value: 58.021
2409
- - type: mrr_at_1000
2410
- value: 58.021
2411
- - type: mrr_at_3
2412
- value: 54.762
2413
- - type: mrr_at_5
2414
- value: 56.19
2415
- - type: ndcg_at_1
2416
- value: 38.775999999999996
2417
- - type: ndcg_at_10
2418
- value: 30.359
2419
- - type: ndcg_at_100
2420
- value: 41.284
2421
- - type: ndcg_at_1000
2422
- value: 52.30200000000001
2423
- - type: ndcg_at_3
2424
- value: 36.744
2425
- - type: ndcg_at_5
2426
- value: 34.326
2427
- - type: precision_at_1
2428
- value: 42.857
2429
- - type: precision_at_10
2430
- value: 26.122
2431
- - type: precision_at_100
2432
- value: 8.082
2433
- - type: precision_at_1000
2434
- value: 1.559
2435
- - type: precision_at_3
2436
- value: 40.136
2437
- - type: precision_at_5
2438
- value: 35.510000000000005
2439
- - type: recall_at_1
2440
- value: 3.567
2441
- - type: recall_at_10
2442
- value: 19.045
2443
- - type: recall_at_100
2444
- value: 49.979
2445
- - type: recall_at_1000
2446
- value: 84.206
2447
- - type: recall_at_3
2448
- value: 8.52
2449
- - type: recall_at_5
2450
- value: 13.103000000000002
2451
- - task:
2452
- type: Classification
2453
- dataset:
2454
- type: mteb/toxic_conversations_50k
2455
- name: MTEB ToxicConversationsClassification
2456
- config: default
2457
- split: test
2458
- revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2459
- metrics:
2460
- - type: accuracy
2461
- value: 68.8394
2462
- - type: ap
2463
- value: 13.454399712443099
2464
- - type: f1
2465
- value: 53.04963076364322
2466
- - task:
2467
- type: Classification
2468
- dataset:
2469
- type: mteb/tweet_sentiment_extraction
2470
- name: MTEB TweetSentimentExtractionClassification
2471
- config: default
2472
- split: test
2473
- revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2474
- metrics:
2475
- - type: accuracy
2476
- value: 60.546123372948514
2477
- - type: f1
2478
- value: 60.86952793277713
2479
- - task:
2480
- type: Clustering
2481
- dataset:
2482
- type: mteb/twentynewsgroups-clustering
2483
- name: MTEB TwentyNewsgroupsClustering
2484
- config: default
2485
- split: test
2486
- revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2487
- metrics:
2488
- - type: v_measure
2489
- value: 49.10042955060234
2490
- - task:
2491
- type: PairClassification
2492
- dataset:
2493
- type: mteb/twittersemeval2015-pairclassification
2494
- name: MTEB TwitterSemEval2015
2495
- config: default
2496
- split: test
2497
- revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2498
- metrics:
2499
- - type: cos_sim_accuracy
2500
- value: 85.03308100375514
2501
- - type: cos_sim_ap
2502
- value: 71.08284605869684
2503
- - type: cos_sim_f1
2504
- value: 65.42539436255494
2505
- - type: cos_sim_precision
2506
- value: 64.14807302231237
2507
- - type: cos_sim_recall
2508
- value: 66.75461741424802
2509
- - type: dot_accuracy
2510
- value: 84.68736961316088
2511
- - type: dot_ap
2512
- value: 69.20524036530992
2513
- - type: dot_f1
2514
- value: 63.54893953365829
2515
- - type: dot_precision
2516
- value: 63.45698500394633
2517
- - type: dot_recall
2518
- value: 63.641160949868066
2519
- - type: euclidean_accuracy
2520
- value: 85.07480479227513
2521
- - type: euclidean_ap
2522
- value: 71.14592761009864
2523
- - type: euclidean_f1
2524
- value: 65.43814432989691
2525
- - type: euclidean_precision
2526
- value: 63.95465994962216
2527
- - type: euclidean_recall
2528
- value: 66.99208443271768
2529
- - type: manhattan_accuracy
2530
- value: 85.06288370984085
2531
- - type: manhattan_ap
2532
- value: 71.07289742593868
2533
- - type: manhattan_f1
2534
- value: 65.37585421412301
2535
- - type: manhattan_precision
2536
- value: 62.816147859922175
2537
- - type: manhattan_recall
2538
- value: 68.15303430079156
2539
- - type: max_accuracy
2540
- value: 85.07480479227513
2541
- - type: max_ap
2542
- value: 71.14592761009864
2543
- - type: max_f1
2544
- value: 65.43814432989691
2545
- - task:
2546
- type: PairClassification
2547
- dataset:
2548
- type: mteb/twitterurlcorpus-pairclassification
2549
- name: MTEB TwitterURLCorpus
2550
- config: default
2551
- split: test
2552
- revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2553
- metrics:
2554
- - type: cos_sim_accuracy
2555
- value: 87.79058485659952
2556
- - type: cos_sim_ap
2557
- value: 83.7183187008759
2558
- - type: cos_sim_f1
2559
- value: 75.86921142180798
2560
- - type: cos_sim_precision
2561
- value: 73.00683371298405
2562
- - type: cos_sim_recall
2563
- value: 78.96519864490298
2564
- - type: dot_accuracy
2565
- value: 87.0085768618776
2566
- - type: dot_ap
2567
- value: 81.87467488474279
2568
- - type: dot_f1
2569
- value: 74.04188363990559
2570
- - type: dot_precision
2571
- value: 72.10507114191901
2572
- - type: dot_recall
2573
- value: 76.08561749307053
2574
- - type: euclidean_accuracy
2575
- value: 87.8332751193387
2576
- - type: euclidean_ap
2577
- value: 83.83585648120315
2578
- - type: euclidean_f1
2579
- value: 76.02582177042369
2580
- - type: euclidean_precision
2581
- value: 73.36388371759989
2582
- - type: euclidean_recall
2583
- value: 78.88820449645827
2584
- - type: manhattan_accuracy
2585
- value: 87.87208444910156
2586
- - type: manhattan_ap
2587
- value: 83.8101950642973
2588
- - type: manhattan_f1
2589
- value: 75.90454195535027
2590
- - type: manhattan_precision
2591
- value: 72.44419564761039
2592
- - type: manhattan_recall
2593
- value: 79.71204188481676
2594
- - type: max_accuracy
2595
- value: 87.87208444910156
2596
- - type: max_ap
2597
- value: 83.83585648120315
2598
- - type: max_f1
2599
- value: 76.02582177042369
2600
  license: mit
2601
  language:
2602
  - en
2603
- pipeline_tag: sentence-similarity
2604
  ---
2605
 
2606
 
2607
-
2608
  <h1 align="center">FlagEmbedding</h1>
2609
 
2610
 
@@ -2614,11 +20,14 @@ pipeline_tag: sentence-similarity
2614
  <a href=#usage>Usage</a> |
2615
  <a href="#evaluation">Evaluation</a> |
2616
  <a href="#train">Train</a> |
 
2617
  <a href="#license">License</a>
2618
  <p>
2619
  </h4>
2620
 
2621
- For more details please refer to our GitHub repo: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
 
 
2622
 
2623
  [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
2624
 
@@ -2626,6 +35,11 @@ FlagEmbedding can map any text to a low-dimensional dense vector which can be us
2626
  And it also can be used in vector databases for LLMs.
2627
 
2628
  ************* 🌟**Updates**🌟 *************
 
 
 
 
 
2629
  - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
2630
  - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
2631
  - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
@@ -2635,66 +49,136 @@ And it also can be used in vector databases for LLMs.
2635
 
2636
  `bge` is short for `BAAI general embedding`.
2637
 
2638
- | Model | Language | Description | query instruction for retrieval |
2639
- |:-------------------------------|:--------:| :--------:| :--------:|
2640
- | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
2641
- | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | rank **2nd** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
2642
- | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
2643
- | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
2644
- | [BAAI/bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | Chinese | This model is trained without instruction, and rank **2nd** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | |
2645
- | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | a base-scale model but has similar ability with `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
2646
- | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2648
 
2649
 
2650
  ## Usage
2651
 
2652
- * **Using FlagEmbedding**
 
 
 
 
 
2653
  ```
2654
  pip install -U FlagEmbedding
2655
  ```
2656
- See [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
2657
 
2658
  ```python
2659
  from FlagEmbedding import FlagModel
2660
- sentences = ["样例数据-1", "样例数据-2"]
 
2661
  model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
2662
- embeddings = model.encode(sentences)
2663
- print(embeddings)
 
 
2664
 
2665
- # for retrieval task, please use encode_queries() which will automatically add the instruction to each query
2666
- # corpus in retrieval task can still use encode() or encode_corpus()
2667
  queries = ['query_1', 'query_2']
2668
- passages = ["样例段落-1", "样例段落-2"]
2669
  q_embeddings = model.encode_queries(queries)
2670
  p_embeddings = model.encode(passages)
2671
  scores = q_embeddings @ p_embeddings.T
2672
  ```
2673
- The value of argument `query_instruction_for_retrieval` see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
2674
 
2675
- FlagModel will use all available GPUs when encoding, please set `os.environ["CUDA_VISIBLE_DEVICES"]` to choose GPU.
 
2676
 
2677
 
2678
- * **Using Sentence-Transformers**
2679
 
2680
- Using this model also is easy when you have [sentence-transformers](https://www.SBERT.net) installed:
2681
 
2682
  ```
2683
  pip install -U sentence-transformers
2684
  ```
2685
  ```python
2686
  from sentence_transformers import SentenceTransformer
2687
- sentences = ["样例数据-1", "样例数据-2"]
 
2688
  model = SentenceTransformer('BAAI/bge-large-zh')
2689
- embeddings = model.encode(sentences, normalize_embeddings=True)
2690
- print(embeddings)
 
 
2691
  ```
2692
- For retrieval task,
2693
- each query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
 
2694
  ```python
2695
  from sentence_transformers import SentenceTransformer
2696
- queries = ["手机开不了机怎么办?"]
2697
- passages = ["样例段落-1", "样例段落-2"]
2698
  instruction = "为这个句子生成表示以用于检索相关文章:"
2699
 
2700
  model = SentenceTransformer('BAAI/bge-large-zh')
@@ -2703,9 +187,27 @@ p_embeddings = model.encode(passages, normalize_embeddings=True)
2703
  scores = q_embeddings @ p_embeddings.T
2704
  ```
2705
 
2706
- * **Using HuggingFace Transformers**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2707
 
2708
- With transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of first token (i.e., [CLS]) as the sentence embedding.
 
 
2709
 
2710
  ```python
2711
  from transformers import AutoTokenizer, AutoModel
@@ -2716,10 +218,11 @@ sentences = ["样例数据-1", "样例数据-2"]
2716
  # Load model from HuggingFace Hub
2717
  tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
2718
  model = AutoModel.from_pretrained('BAAI/bge-large-zh')
 
2719
 
2720
  # Tokenize sentences
2721
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
2722
- # for retrieval task, add an instruction to query
2723
  # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
2724
 
2725
  # Compute token embeddings
@@ -2732,21 +235,65 @@ sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, di
2732
  print("Sentence embeddings:", sentence_embeddings)
2733
  ```
2734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2735
 
2736
  ## Evaluation
 
2737
  `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
2738
- More details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
2739
 
2740
  - **MTEB**:
2741
 
2742
  | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
2743
  |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
2744
- | [**bge-large-en**](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | **63.98** | **53.9** | **46.98** | 85.8 | **59.48** | 81.56 | 32.06 | **76.21** |
2745
- | [**bge-base-en**](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
 
 
 
2746
  | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
2747
  | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
2748
  | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
2749
- | [**bge-small-en**](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
2750
  | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
2751
  | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
2752
  | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
@@ -2755,85 +302,80 @@ More details and evaluation tools see our [scripts](https://github.com/FlagOpen/
2755
  | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
2756
  | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
2757
  | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
2758
- | [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 384 | 512 | 56.53 | 42.69 | 41.81 | 82.41 | 58.44 | 79.8 | 27.9 | 63.21 |
2759
- | [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 384 | 512 | 56.26 | 41.95 | 42.35 | 82.37 | 58.04 | 78.9 | 30.81 | 63.05 |
2760
- | [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 768 | 512 | 56.00 | 41.88 | 41.1 | 82.54 | 53.14 | 76.51 | 30.36 | 66.68 |
2761
- | [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 768 | 512 | 55.27 | 33.63 | 40.21 | 85.18 | 53.09 | 81.14 | 31.39 | 69.81 |
2762
 
2763
 
2764
 
2765
  - **C-MTEB**:
2766
- We create a benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
2767
  Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
2768
 
2769
  | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
2770
  |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
2771
- | [**bge-large-zh**](https://huggingface.co/BAAI/bge-large-zh) | 1024 | **64.20** | **71.53** | **53.23** | **78.94** | 72.26 | **65.11** | 48.39 |
2772
- | [**bge-large-zh-noinstruct**](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 50.98 | 76.77 | **72.49** | 64.91 | **50.01** |
2773
- | [**BAAI/bge-base-zh**](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 52.05 | 77.5 | 70.98 | 64.91 | 47.63 |
2774
- | [**BAAI/bge-small-zh**](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 46.87 | 70.35 | 67.78 | 61.48 | 45.09 |
2775
- | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 |56.91 | 48.15 | 63.99 | 70.28 | 59.34 | 47.68 |
2776
- | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 |54.75 | 48.64 | 64.3 | 71.22 | 59.66 | 48.88 |
2777
- | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 40.61 | 69.56 | 67.38 | 54.28 | 45.68 |
2778
- | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 39.41 | 66.62 | 65.29 | 49.25 | 44.39 |
2779
- | [text2vec](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 41.71 | 67.41 | 65.18 | 49.45 | 37.66 |
2780
- | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 41.98 | 70.86 | 63.42 | 49.16 | 30.02 |
2781
-
2782
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2783
 
2784
  ## Train
2785
- This section will introduce the way we used to train the general embedding.
2786
- The training scripts are in [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md),
2787
- and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/pretrain/README.md) and [fine-tune](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/finetune/README.md).
2788
-
2789
 
2790
- **1. RetroMAE Pre-train**
2791
- We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE),
2792
- which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)).
2793
- The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720.
2794
- In retromae, the mask ratio of encoder and decoder are 0.3, and 0.5 respectively.
2795
- We used the AdamW optimizer and the learning rate is 2e-5.
2796
 
2797
- **Pre-training data**:
2798
- - English:
2799
- - [Pile](https://pile.eleuther.ai/)
2800
- - [wikipedia](https://huggingface.co/datasets/wikipedia)
2801
- - [msmarco](https://huggingface.co/datasets/Tevatron/msmarco-passage-corpus)
2802
- - Chinese:
2803
- - Subset of [wudao](https://github.com/BAAI-WuDao/Data)
2804
- - [baidu-baike](https://baike.baidu.com/)
2805
 
2806
 
2807
- **2. Finetune**
2808
- We fine-tune the model using a contrastive objective.
2809
- The format of input data is a triple`(query, positive, negative)`.
2810
- Besides the negative in the triple, we also adopt in-batch negatives strategy.
2811
- We employ the cross-device negatives sharing method to share negatives among different GPUs,
2812
- which can dramatically **increase the number of negatives**.
2813
 
2814
- We trained our model on 48 A100(40G) GPUs with a large batch size of 32,768 (so there are **65,535** negatives for each query in a batch).
2815
- We used the AdamW optimizer and the learning rate is 1e-5.
2816
- The temperature for contrastive loss is 0.01.
2817
 
2818
- For the version with `*-instrcution`, we add instruction to the query for retrieval task in the training.
2819
- For english, the instruction is `Represent this sentence for searching relevant passages: `;
2820
- For chinese, the instruction is `为这个句子生成表示以用于检索相关文章:`.
2821
- In the evaluation, the instruction should be added for sentence to passages retrieval task, not be added for other tasks.
 
 
2822
 
2823
 
2824
- The finetune script is accessible in this repository: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
2825
- You can easily finetune your model with it.
 
2826
 
2827
- **Training data**:
2828
 
2829
- - For English, we collect 230M text pairs from [wikipedia](https://huggingface.co/datasets/wikipedia), [cc-net](https://github.com/facebookresearch/cc_net), and so on.
2830
-
2831
- - For chinese, we collect 120M text pairs from [wudao](https://github.com/BAAI-WuDao/Data), [simclue](https://github.com/CLUEbenchmark/SimCLUE) and so on.
2832
 
2833
- **The data collection is to be released in the future.**
2834
 
2835
- We will continually update the embedding models and training codes,
2836
- hoping to promote the development of the embedding model community.
2837
 
2838
- ## License
2839
- FlagEmbedding is licensed under [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
 
1
  ---
2
+ pipeline_tag: sentence-similarity
3
  tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  license: mit
9
  language:
10
  - en
 
11
  ---
12
 
13
 
 
14
  <h1 align="center">FlagEmbedding</h1>
15
 
16
 
 
20
  <a href=#usage>Usage</a> |
21
  <a href="#evaluation">Evaluation</a> |
22
  <a href="#train">Train</a> |
23
+ <a href="#contact">Contact</a> |
24
  <a href="#license">License</a>
25
  <p>
26
  </h4>
27
 
28
+ More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
29
+
30
+
31
 
32
  [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
33
 
 
35
  And it also can be used in vector databases for LLMs.
36
 
37
  ************* 🌟**Updates**🌟 *************
38
+ - 09/12/2023: New Release:
39
+ - **New reranker model**: release a cross-encoder model bge-reranker-base, which is more powerful than embedding model. We recommend to use/fine-tune it to re-rank top-k documents returned by embedding models.
40
+ - **update embedding model**: release bge-*-v1.5 embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
41
+ - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
42
+ - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
43
  - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
44
  - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
45
  - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
 
49
 
50
  `bge` is short for `BAAI general embedding`.
51
 
52
+ | Model | Language | | Description | query instruction for retrieval\* |
53
+ |:-------------------------------|:--------:| :--------:| :--------:|:--------:|
54
+ | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
55
+ | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
56
+ | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
57
+ | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
58
+ | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
59
+ | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
60
+ | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
61
+ | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
62
+ | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
63
+ | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
64
+ | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
65
+ | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
66
+ | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
67
+ | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
68
+
69
+
70
+ \*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
71
+
72
+ \**: To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
73
+ For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
74
+
75
+
76
+ ## Frequently asked questions
77
+
78
+ <details>
79
+ <summary>1. How to fine-tune bge embedding model?</summary>
80
+
81
+ <!-- ### How to fine-tune bge embedding model? -->
82
+ Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
83
+ Some suggestions:
84
+ - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#data-format), which can improve the retrieval performance.
85
+ - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
86
+ - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
87
+
88
+
89
+ </details>
90
+
91
+ <details>
92
+ <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
93
+
94
+ <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
95
+ **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
96
 
97
+ Since we finetune the models by contrastive learning with a temperature of 0.01,
98
+ the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
99
+ So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
100
+
101
+ For downstream tasks, such as passage retrieval or semantic similarity,
102
+ **what matters is the relative order of the scores, not the absolute value.**
103
+ If you need to filter similar sentences based on a similarity threshold,
104
+ please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
105
+
106
+ </details>
107
+
108
+ <details>
109
+ <summary>3. When does the query instruction need to be used</summary>
110
+
111
+ <!-- ### When does the query instruction need to be used -->
112
+
113
+ For a retrieval task that uses short queries to find long related documents,
114
+ it is recommended to add instructions for these short queries.
115
+ **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
116
+ In all cases, the documents/passages do not need to add the instruction.
117
+
118
+ </details>
119
 
120
 
121
  ## Usage
122
 
123
+ ### Usage for Embedding Model
124
+
125
+ Here are some examples for using `bge` models with
126
+ [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
127
+
128
+ #### Using FlagEmbedding
129
  ```
130
  pip install -U FlagEmbedding
131
  ```
132
+ If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
133
 
134
  ```python
135
  from FlagEmbedding import FlagModel
136
+ sentences_1 = ["样例数据-1", "样例数据-2"]
137
+ sentences_2 = ["样例数据-3", "样例数据-4"]
138
  model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
139
+ embeddings_1 = model.encode(sentences_1)
140
+ embeddings_2 = model.encode(sentences_2)
141
+ similarity = embeddings_1 @ embeddings_2.T
142
+ print(similarity)
143
 
144
+ # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
145
+ # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
146
  queries = ['query_1', 'query_2']
147
+ passages = ["样例文档-1", "样例文档-2"]
148
  q_embeddings = model.encode_queries(queries)
149
  p_embeddings = model.encode(passages)
150
  scores = q_embeddings @ p_embeddings.T
151
  ```
152
+ For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
153
 
154
+ By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
155
+ You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
156
 
157
 
158
+ #### Using Sentence-Transformers
159
 
160
+ You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
161
 
162
  ```
163
  pip install -U sentence-transformers
164
  ```
165
  ```python
166
  from sentence_transformers import SentenceTransformer
167
+ sentences_1 = ["样例数据-1", "样例数据-2"]
168
+ sentences_2 = ["样例数据-3", "样例数据-4"]
169
  model = SentenceTransformer('BAAI/bge-large-zh')
170
+ embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
171
+ embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
172
+ similarity = embeddings_1 @ embeddings_2.T
173
+ print(similarity)
174
  ```
175
+ For s2p(short query to long passage) retrieval task,
176
+ each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
177
+ But the instruction is not needed for passages.
178
  ```python
179
  from sentence_transformers import SentenceTransformer
180
+ queries = ['query_1', 'query_2']
181
+ passages = ["样例文档-1", "样例文档-2"]
182
  instruction = "为这个句子生成表示以用于检索相关文章:"
183
 
184
  model = SentenceTransformer('BAAI/bge-large-zh')
 
187
  scores = q_embeddings @ p_embeddings.T
188
  ```
189
 
190
+ #### Using Langchain
191
+
192
+ You can use `bge` in langchain like this:
193
+ ```python
194
+ from langchain.embeddings import HuggingFaceBgeEmbeddings
195
+ model_name = "BAAI/bge-small-en"
196
+ model_kwargs = {'device': 'cuda'}
197
+ encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
198
+ model = HuggingFaceBgeEmbeddings(
199
+ model_name=model_name,
200
+ model_kwargs=model_kwargs,
201
+ encode_kwargs=encode_kwargs,
202
+ query_instruction="为这���句子生成表示以用于检索相关文章:"
203
+ )
204
+ model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
205
+ ```
206
+
207
 
208
+ #### Using HuggingFace Transformers
209
+
210
+ With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
211
 
212
  ```python
213
  from transformers import AutoTokenizer, AutoModel
 
218
  # Load model from HuggingFace Hub
219
  tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
220
  model = AutoModel.from_pretrained('BAAI/bge-large-zh')
221
+ model.eval()
222
 
223
  # Tokenize sentences
224
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
225
+ # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
226
  # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
227
 
228
  # Compute token embeddings
 
235
  print("Sentence embeddings:", sentence_embeddings)
236
  ```
237
 
238
+ ### Usage for Reranker
239
+
240
+ You can get a relevance score by inputting query and passage to the reranker.
241
+ The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
242
+
243
+
244
+ #### Using FlagEmbedding
245
+ ```
246
+ pip install -U FlagEmbedding
247
+ ```
248
+
249
+ Get relevance score:
250
+ ```python
251
+ from FlagEmbedding import FlagReranker
252
+ reranker = FlagReranker('BAAI/bge-reranker-base', use_fp16=True) #use fp16 can speed up computing
253
+
254
+ score = reranker.compute_score(['query', 'passage'])
255
+ print(score)
256
+
257
+ scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
258
+ print(scores)
259
+ ```
260
+
261
+
262
+ #### Using Huggingface transformers
263
+
264
+ ```python
265
+ import torch
266
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, BatchEncoding, PreTrainedTokenizerFast
267
+
268
+ tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-base')
269
+ model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base')
270
+ model.eval()
271
+
272
+ pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
273
+ with torch.no_grad():
274
+ inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
275
+ scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
276
+ print(scores)
277
+ ```
278
 
279
  ## Evaluation
280
+
281
  `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
282
+ For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
283
 
284
  - **MTEB**:
285
 
286
  | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
287
  |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
288
+ | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
289
+ | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
290
+ | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
291
+ | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
292
+ | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
293
  | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
294
  | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
295
  | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
296
+ | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
297
  | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
298
  | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
299
  | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
 
302
  | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
303
  | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
304
  | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
 
 
 
 
305
 
306
 
307
 
308
  - **C-MTEB**:
309
+ We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
310
  Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
311
 
312
  | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
313
  |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
314
+ | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
315
+ | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
316
+ | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
317
+ | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
318
+ | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
319
+ | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
320
+ | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
321
+ | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
322
+ | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
323
+ | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
324
+ | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
325
+ | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
326
+ | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
327
+ | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
328
+ | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
329
+ | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
330
+
331
+
332
+ - **Reranking**:
333
+ See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
334
+
335
+ | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MmarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
336
+ |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
337
+ | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
338
+ | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
339
+ | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
340
+ | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
341
+ | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
342
+ | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
343
+ | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
344
+ | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
345
+ | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
346
+ | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
347
+
348
+ \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval task
349
 
350
  ## Train
 
 
 
 
351
 
352
+ ### BAAI Embedding
 
 
 
 
 
353
 
354
+ We pre-train the models using retromae and train them on large-scale pairs data using contrastive learning.
355
+ **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
356
+ We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
357
+ Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
358
+ More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
 
 
 
359
 
360
 
 
 
 
 
 
 
361
 
362
+ ### BGE Reranker
 
 
363
 
364
+ Cross-encoder will perform full-attention over the input pair,
365
+ which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
366
+ Therefore, it can be used to re-rank the top-k documents returned by embedding model.
367
+ We train the cross-encoder on a multilingual pair data,
368
+ The data format is the same as embedding model, so you can fine-tune it easily following our example.
369
+ More details pelease refer to [./FlagEmbedding/reranker/README.md](./FlagEmbedding/reranker/README.md)
370
 
371
 
372
+ ## Contact
373
+ If you have any question or suggestion related to this project, feel free to open an issue or pull request.
374
+ You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]).
375
 
 
376
 
377
+ ## License
378
+ FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
 
379
 
 
380
 
 
 
381