--- tags: - mteb - sentence transformers model-index: - name: bge-small-en results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 74.34328358208955 - type: ap value: 37.59947775195661 - type: f1 value: 68.548415491933 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 93.04527499999999 - type: ap value: 89.60696356772135 - type: f1 value: 93.03361469382438 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 46.08 - type: f1 value: 45.66249835363254 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 35.205999999999996 - type: map_at_10 value: 50.782000000000004 - type: map_at_100 value: 51.547 - type: map_at_1000 value: 51.554 - type: map_at_3 value: 46.515 - type: map_at_5 value: 49.296 - type: mrr_at_1 value: 35.632999999999996 - type: mrr_at_10 value: 50.958999999999996 - type: mrr_at_100 value: 51.724000000000004 - type: mrr_at_1000 value: 51.731 - type: mrr_at_3 value: 46.669 - type: mrr_at_5 value: 49.439 - type: ndcg_at_1 value: 35.205999999999996 - type: ndcg_at_10 value: 58.835 - type: ndcg_at_100 value: 62.095 - type: ndcg_at_1000 value: 62.255 - type: ndcg_at_3 value: 50.255 - type: ndcg_at_5 value: 55.296 - type: precision_at_1 value: 35.205999999999996 - type: precision_at_10 value: 8.421 - type: precision_at_100 value: 0.984 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 20.365 - type: precision_at_5 value: 14.680000000000001 - type: recall_at_1 value: 35.205999999999996 - type: recall_at_10 value: 84.211 - type: recall_at_100 value: 98.43499999999999 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 61.095 - type: recall_at_5 value: 73.4 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 47.52644476278646 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 39.973045724188964 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.28285314871488 - type: mrr value: 74.52743701358659 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 80.09041909160327 - type: cos_sim_spearman value: 79.96266537706944 - type: euclidean_pearson value: 79.50774978162241 - type: euclidean_spearman value: 79.9144715078551 - type: manhattan_pearson value: 79.2062139879302 - type: manhattan_spearman value: 79.35000081468212 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 85.31493506493506 - type: f1 value: 85.2704557977762 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 39.6837242810816 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 35.38881249555897 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.884999999999998 - type: map_at_10 value: 39.574 - type: map_at_100 value: 40.993 - type: map_at_1000 value: 41.129 - type: map_at_3 value: 36.089 - type: map_at_5 value: 38.191 - type: mrr_at_1 value: 34.477999999999994 - type: mrr_at_10 value: 45.411 - type: mrr_at_100 value: 46.089999999999996 - type: mrr_at_1000 value: 46.147 - type: mrr_at_3 value: 42.346000000000004 - type: mrr_at_5 value: 44.292 - type: ndcg_at_1 value: 34.477999999999994 - type: ndcg_at_10 value: 46.123999999999995 - type: ndcg_at_100 value: 51.349999999999994 - type: ndcg_at_1000 value: 53.578 - type: ndcg_at_3 value: 40.824 - type: ndcg_at_5 value: 43.571 - type: precision_at_1 value: 34.477999999999994 - type: precision_at_10 value: 8.841000000000001 - type: precision_at_100 value: 1.4460000000000002 - type: precision_at_1000 value: 0.192 - type: precision_at_3 value: 19.742 - type: precision_at_5 value: 14.421000000000001 - type: recall_at_1 value: 27.884999999999998 - type: recall_at_10 value: 59.087 - type: recall_at_100 value: 80.609 - type: recall_at_1000 value: 95.054 - type: recall_at_3 value: 44.082 - type: recall_at_5 value: 51.593999999999994 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 30.639 - type: map_at_10 value: 40.047 - type: map_at_100 value: 41.302 - type: map_at_1000 value: 41.425 - type: map_at_3 value: 37.406 - type: map_at_5 value: 38.934000000000005 - type: mrr_at_1 value: 37.707 - type: mrr_at_10 value: 46.082 - type: mrr_at_100 value: 46.745 - type: mrr_at_1000 value: 46.786 - type: mrr_at_3 value: 43.980999999999995 - type: mrr_at_5 value: 45.287 - type: ndcg_at_1 value: 37.707 - type: ndcg_at_10 value: 45.525 - type: ndcg_at_100 value: 49.976 - type: ndcg_at_1000 value: 51.94499999999999 - type: ndcg_at_3 value: 41.704 - type: ndcg_at_5 value: 43.596000000000004 - type: precision_at_1 value: 37.707 - type: precision_at_10 value: 8.465 - type: precision_at_100 value: 1.375 - type: precision_at_1000 value: 0.183 - type: precision_at_3 value: 19.979 - type: precision_at_5 value: 14.115 - type: recall_at_1 value: 30.639 - type: recall_at_10 value: 54.775 - type: recall_at_100 value: 73.678 - type: recall_at_1000 value: 86.142 - type: recall_at_3 value: 43.230000000000004 - type: recall_at_5 value: 48.622 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 38.038 - type: map_at_10 value: 49.922 - type: map_at_100 value: 51.032 - type: map_at_1000 value: 51.085 - type: map_at_3 value: 46.664 - type: map_at_5 value: 48.588 - type: mrr_at_1 value: 43.95 - type: mrr_at_10 value: 53.566 - type: mrr_at_100 value: 54.318999999999996 - type: mrr_at_1000 value: 54.348 - type: mrr_at_3 value: 51.066 - type: mrr_at_5 value: 52.649 - type: ndcg_at_1 value: 43.95 - type: ndcg_at_10 value: 55.676 - type: ndcg_at_100 value: 60.126000000000005 - type: ndcg_at_1000 value: 61.208 - type: ndcg_at_3 value: 50.20400000000001 - type: ndcg_at_5 value: 53.038 - type: precision_at_1 value: 43.95 - type: precision_at_10 value: 8.953 - type: precision_at_100 value: 1.2109999999999999 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 22.256999999999998 - type: precision_at_5 value: 15.524 - type: recall_at_1 value: 38.038 - type: recall_at_10 value: 69.15 - type: recall_at_100 value: 88.31599999999999 - type: recall_at_1000 value: 95.993 - type: recall_at_3 value: 54.663 - type: recall_at_5 value: 61.373 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.872 - type: map_at_10 value: 32.912 - type: map_at_100 value: 33.972 - type: map_at_1000 value: 34.046 - type: map_at_3 value: 30.361 - type: map_at_5 value: 31.704 - type: mrr_at_1 value: 26.779999999999998 - type: mrr_at_10 value: 34.812 - type: mrr_at_100 value: 35.754999999999995 - type: mrr_at_1000 value: 35.809000000000005 - type: mrr_at_3 value: 32.335 - type: mrr_at_5 value: 33.64 - type: ndcg_at_1 value: 26.779999999999998 - type: ndcg_at_10 value: 37.623 - type: ndcg_at_100 value: 42.924 - type: ndcg_at_1000 value: 44.856 - type: ndcg_at_3 value: 32.574 - type: ndcg_at_5 value: 34.842 - type: precision_at_1 value: 26.779999999999998 - type: precision_at_10 value: 5.729 - type: precision_at_100 value: 0.886 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 13.559 - type: precision_at_5 value: 9.469 - type: recall_at_1 value: 24.872 - type: recall_at_10 value: 50.400999999999996 - type: recall_at_100 value: 74.954 - type: recall_at_1000 value: 89.56 - type: recall_at_3 value: 36.726 - type: recall_at_5 value: 42.138999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.803 - type: map_at_10 value: 24.348 - type: map_at_100 value: 25.56 - type: map_at_1000 value: 25.668000000000003 - type: map_at_3 value: 21.811 - type: map_at_5 value: 23.287 - type: mrr_at_1 value: 20.771 - type: mrr_at_10 value: 28.961 - type: mrr_at_100 value: 29.979 - type: mrr_at_1000 value: 30.046 - type: mrr_at_3 value: 26.555 - type: mrr_at_5 value: 28.060000000000002 - type: ndcg_at_1 value: 20.771 - type: ndcg_at_10 value: 29.335 - type: ndcg_at_100 value: 35.188 - type: ndcg_at_1000 value: 37.812 - type: ndcg_at_3 value: 24.83 - type: ndcg_at_5 value: 27.119 - type: precision_at_1 value: 20.771 - type: precision_at_10 value: 5.4350000000000005 - type: precision_at_100 value: 0.9480000000000001 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 11.982 - type: precision_at_5 value: 8.831 - type: recall_at_1 value: 16.803 - type: recall_at_10 value: 40.039 - type: recall_at_100 value: 65.83200000000001 - type: recall_at_1000 value: 84.478 - type: recall_at_3 value: 27.682000000000002 - type: recall_at_5 value: 33.535 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.345 - type: map_at_10 value: 37.757000000000005 - type: map_at_100 value: 39.141 - type: map_at_1000 value: 39.262 - type: map_at_3 value: 35.183 - type: map_at_5 value: 36.592 - type: mrr_at_1 value: 34.649 - type: mrr_at_10 value: 43.586999999999996 - type: mrr_at_100 value: 44.481 - type: mrr_at_1000 value: 44.542 - type: mrr_at_3 value: 41.29 - type: mrr_at_5 value: 42.642 - type: ndcg_at_1 value: 34.649 - type: ndcg_at_10 value: 43.161 - type: ndcg_at_100 value: 48.734 - type: ndcg_at_1000 value: 51.046 - type: ndcg_at_3 value: 39.118 - type: ndcg_at_5 value: 41.022 - type: precision_at_1 value: 34.649 - type: precision_at_10 value: 7.603 - type: precision_at_100 value: 1.209 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 18.319 - type: precision_at_5 value: 12.839 - type: recall_at_1 value: 28.345 - type: recall_at_10 value: 53.367 - type: recall_at_100 value: 76.453 - type: recall_at_1000 value: 91.82000000000001 - type: recall_at_3 value: 41.636 - type: recall_at_5 value: 46.760000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.419 - type: map_at_10 value: 31.716 - type: map_at_100 value: 33.152 - type: map_at_1000 value: 33.267 - type: map_at_3 value: 28.74 - type: map_at_5 value: 30.48 - type: mrr_at_1 value: 28.310999999999996 - type: mrr_at_10 value: 37.039 - type: mrr_at_100 value: 38.09 - type: mrr_at_1000 value: 38.145 - type: mrr_at_3 value: 34.437 - type: mrr_at_5 value: 36.024 - type: ndcg_at_1 value: 28.310999999999996 - type: ndcg_at_10 value: 37.41 - type: ndcg_at_100 value: 43.647999999999996 - type: ndcg_at_1000 value: 46.007 - type: ndcg_at_3 value: 32.509 - type: ndcg_at_5 value: 34.943999999999996 - type: precision_at_1 value: 28.310999999999996 - type: precision_at_10 value: 6.963 - type: precision_at_100 value: 1.1860000000000002 - type: precision_at_1000 value: 0.154 - type: precision_at_3 value: 15.867999999999999 - type: precision_at_5 value: 11.507000000000001 - type: recall_at_1 value: 22.419 - type: recall_at_10 value: 49.28 - type: recall_at_100 value: 75.802 - type: recall_at_1000 value: 92.032 - type: recall_at_3 value: 35.399 - type: recall_at_5 value: 42.027 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.669249999999998 - type: map_at_10 value: 33.332583333333325 - type: map_at_100 value: 34.557833333333335 - type: map_at_1000 value: 34.67141666666666 - type: map_at_3 value: 30.663166666666662 - type: map_at_5 value: 32.14883333333333 - type: mrr_at_1 value: 29.193833333333334 - type: mrr_at_10 value: 37.47625 - type: mrr_at_100 value: 38.3545 - type: mrr_at_1000 value: 38.413166666666676 - type: mrr_at_3 value: 35.06741666666667 - type: mrr_at_5 value: 36.450666666666656 - type: ndcg_at_1 value: 29.193833333333334 - type: ndcg_at_10 value: 38.505416666666676 - type: ndcg_at_100 value: 43.81125 - type: ndcg_at_1000 value: 46.09558333333333 - type: ndcg_at_3 value: 33.90916666666667 - type: ndcg_at_5 value: 36.07666666666666 - type: precision_at_1 value: 29.193833333333334 - type: precision_at_10 value: 6.7251666666666665 - type: precision_at_100 value: 1.1058333333333332 - type: precision_at_1000 value: 0.14833333333333332 - type: precision_at_3 value: 15.554166666666665 - type: precision_at_5 value: 11.079250000000002 - type: recall_at_1 value: 24.669249999999998 - type: recall_at_10 value: 49.75583333333332 - type: recall_at_100 value: 73.06908333333332 - type: recall_at_1000 value: 88.91316666666667 - type: recall_at_3 value: 36.913250000000005 - type: recall_at_5 value: 42.48641666666666 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.044999999999998 - type: map_at_10 value: 30.349999999999998 - type: map_at_100 value: 31.273 - type: map_at_1000 value: 31.362000000000002 - type: map_at_3 value: 28.508 - type: map_at_5 value: 29.369 - type: mrr_at_1 value: 26.994 - type: mrr_at_10 value: 33.12 - type: mrr_at_100 value: 33.904 - type: mrr_at_1000 value: 33.967000000000006 - type: mrr_at_3 value: 31.365 - type: mrr_at_5 value: 32.124 - type: ndcg_at_1 value: 26.994 - type: ndcg_at_10 value: 34.214 - type: ndcg_at_100 value: 38.681 - type: ndcg_at_1000 value: 40.926 - type: ndcg_at_3 value: 30.725 - type: ndcg_at_5 value: 31.967000000000002 - type: precision_at_1 value: 26.994 - type: precision_at_10 value: 5.215 - type: precision_at_100 value: 0.807 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 12.986 - type: precision_at_5 value: 8.712 - type: recall_at_1 value: 24.044999999999998 - type: recall_at_10 value: 43.456 - type: recall_at_100 value: 63.675000000000004 - type: recall_at_1000 value: 80.05499999999999 - type: recall_at_3 value: 33.561 - type: recall_at_5 value: 36.767 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 15.672 - type: map_at_10 value: 22.641 - type: map_at_100 value: 23.75 - type: map_at_1000 value: 23.877000000000002 - type: map_at_3 value: 20.219 - type: map_at_5 value: 21.648 - type: mrr_at_1 value: 18.823 - type: mrr_at_10 value: 26.101999999999997 - type: mrr_at_100 value: 27.038 - type: mrr_at_1000 value: 27.118 - type: mrr_at_3 value: 23.669 - type: mrr_at_5 value: 25.173000000000002 - type: ndcg_at_1 value: 18.823 - type: ndcg_at_10 value: 27.176000000000002 - type: ndcg_at_100 value: 32.42 - type: ndcg_at_1000 value: 35.413 - type: ndcg_at_3 value: 22.756999999999998 - type: ndcg_at_5 value: 25.032 - type: precision_at_1 value: 18.823 - type: precision_at_10 value: 5.034000000000001 - type: precision_at_100 value: 0.895 - type: precision_at_1000 value: 0.132 - type: precision_at_3 value: 10.771 - type: precision_at_5 value: 8.1 - type: recall_at_1 value: 15.672 - type: recall_at_10 value: 37.296 - type: recall_at_100 value: 60.863 - type: recall_at_1000 value: 82.234 - type: recall_at_3 value: 25.330000000000002 - type: recall_at_5 value: 30.964000000000002 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.633 - type: map_at_10 value: 32.858 - type: map_at_100 value: 34.038000000000004 - type: map_at_1000 value: 34.141 - type: map_at_3 value: 30.209000000000003 - type: map_at_5 value: 31.567 - type: mrr_at_1 value: 28.358 - type: mrr_at_10 value: 36.433 - type: mrr_at_100 value: 37.352000000000004 - type: mrr_at_1000 value: 37.41 - type: mrr_at_3 value: 34.033 - type: mrr_at_5 value: 35.246 - type: ndcg_at_1 value: 28.358 - type: ndcg_at_10 value: 37.973 - type: ndcg_at_100 value: 43.411 - type: ndcg_at_1000 value: 45.747 - type: ndcg_at_3 value: 32.934999999999995 - type: ndcg_at_5 value: 35.013 - type: precision_at_1 value: 28.358 - type: precision_at_10 value: 6.418 - type: precision_at_100 value: 1.02 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 14.677000000000001 - type: precision_at_5 value: 10.335999999999999 - type: recall_at_1 value: 24.633 - type: recall_at_10 value: 50.048 - type: recall_at_100 value: 73.821 - type: recall_at_1000 value: 90.046 - type: recall_at_3 value: 36.284 - type: recall_at_5 value: 41.370000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.133 - type: map_at_10 value: 31.491999999999997 - type: map_at_100 value: 33.062000000000005 - type: map_at_1000 value: 33.256 - type: map_at_3 value: 28.886 - type: map_at_5 value: 30.262 - type: mrr_at_1 value: 28.063 - type: mrr_at_10 value: 36.144 - type: mrr_at_100 value: 37.14 - type: mrr_at_1000 value: 37.191 - type: mrr_at_3 value: 33.762 - type: mrr_at_5 value: 34.997 - type: ndcg_at_1 value: 28.063 - type: ndcg_at_10 value: 36.951 - type: ndcg_at_100 value: 43.287 - type: ndcg_at_1000 value: 45.777 - type: ndcg_at_3 value: 32.786 - type: ndcg_at_5 value: 34.65 - type: precision_at_1 value: 28.063 - type: precision_at_10 value: 7.055 - type: precision_at_100 value: 1.476 - type: precision_at_1000 value: 0.22899999999999998 - type: precision_at_3 value: 15.481 - type: precision_at_5 value: 11.186 - type: recall_at_1 value: 23.133 - type: recall_at_10 value: 47.285 - type: recall_at_100 value: 76.176 - type: recall_at_1000 value: 92.176 - type: recall_at_3 value: 35.223 - type: recall_at_5 value: 40.142 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 19.547 - type: map_at_10 value: 26.374 - type: map_at_100 value: 27.419 - type: map_at_1000 value: 27.539 - type: map_at_3 value: 23.882 - type: map_at_5 value: 25.163999999999998 - type: mrr_at_1 value: 21.442 - type: mrr_at_10 value: 28.458 - type: mrr_at_100 value: 29.360999999999997 - type: mrr_at_1000 value: 29.448999999999998 - type: mrr_at_3 value: 25.97 - type: mrr_at_5 value: 27.273999999999997 - type: ndcg_at_1 value: 21.442 - type: ndcg_at_10 value: 30.897000000000002 - type: ndcg_at_100 value: 35.99 - type: ndcg_at_1000 value: 38.832 - type: ndcg_at_3 value: 25.944 - type: ndcg_at_5 value: 28.126 - type: precision_at_1 value: 21.442 - type: precision_at_10 value: 4.9910000000000005 - type: precision_at_100 value: 0.8109999999999999 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 11.029 - type: precision_at_5 value: 7.911 - type: recall_at_1 value: 19.547 - type: recall_at_10 value: 42.886 - type: recall_at_100 value: 66.64999999999999 - type: recall_at_1000 value: 87.368 - type: recall_at_3 value: 29.143 - type: recall_at_5 value: 34.544000000000004 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 15.572 - type: map_at_10 value: 25.312 - type: map_at_100 value: 27.062 - type: map_at_1000 value: 27.253 - type: map_at_3 value: 21.601 - type: map_at_5 value: 23.473 - type: mrr_at_1 value: 34.984 - type: mrr_at_10 value: 46.406 - type: mrr_at_100 value: 47.179 - type: mrr_at_1000 value: 47.21 - type: mrr_at_3 value: 43.485 - type: mrr_at_5 value: 45.322 - type: ndcg_at_1 value: 34.984 - type: ndcg_at_10 value: 34.344 - type: ndcg_at_100 value: 41.015 - type: ndcg_at_1000 value: 44.366 - type: ndcg_at_3 value: 29.119 - type: ndcg_at_5 value: 30.825999999999997 - type: precision_at_1 value: 34.984 - type: precision_at_10 value: 10.358 - type: precision_at_100 value: 1.762 - type: precision_at_1000 value: 0.23900000000000002 - type: precision_at_3 value: 21.368000000000002 - type: precision_at_5 value: 15.948 - type: recall_at_1 value: 15.572 - type: recall_at_10 value: 39.367999999999995 - type: recall_at_100 value: 62.183 - type: recall_at_1000 value: 80.92200000000001 - type: recall_at_3 value: 26.131999999999998 - type: recall_at_5 value: 31.635999999999996 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.848 - type: map_at_10 value: 19.25 - type: map_at_100 value: 27.193 - type: map_at_1000 value: 28.721999999999998 - type: map_at_3 value: 13.968 - type: map_at_5 value: 16.283 - type: mrr_at_1 value: 68.75 - type: mrr_at_10 value: 76.25 - type: mrr_at_100 value: 76.534 - type: mrr_at_1000 value: 76.53999999999999 - type: mrr_at_3 value: 74.667 - type: mrr_at_5 value: 75.86699999999999 - type: ndcg_at_1 value: 56.00000000000001 - type: ndcg_at_10 value: 41.426 - type: ndcg_at_100 value: 45.660000000000004 - type: ndcg_at_1000 value: 53.02 - type: ndcg_at_3 value: 46.581 - type: ndcg_at_5 value: 43.836999999999996 - type: precision_at_1 value: 68.75 - type: precision_at_10 value: 32.800000000000004 - type: precision_at_100 value: 10.440000000000001 - type: precision_at_1000 value: 1.9980000000000002 - type: precision_at_3 value: 49.667 - type: precision_at_5 value: 42.25 - type: recall_at_1 value: 8.848 - type: recall_at_10 value: 24.467 - type: recall_at_100 value: 51.344 - type: recall_at_1000 value: 75.235 - type: recall_at_3 value: 15.329 - type: recall_at_5 value: 18.892999999999997 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 48.95 - type: f1 value: 43.44563593360779 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 78.036 - type: map_at_10 value: 85.639 - type: map_at_100 value: 85.815 - type: map_at_1000 value: 85.829 - type: map_at_3 value: 84.795 - type: map_at_5 value: 85.336 - type: mrr_at_1 value: 84.353 - type: mrr_at_10 value: 90.582 - type: mrr_at_100 value: 90.617 - type: mrr_at_1000 value: 90.617 - type: mrr_at_3 value: 90.132 - type: mrr_at_5 value: 90.447 - type: ndcg_at_1 value: 84.353 - type: ndcg_at_10 value: 89.003 - type: ndcg_at_100 value: 89.60000000000001 - type: ndcg_at_1000 value: 89.836 - type: ndcg_at_3 value: 87.81400000000001 - type: ndcg_at_5 value: 88.478 - type: precision_at_1 value: 84.353 - type: precision_at_10 value: 10.482 - type: precision_at_100 value: 1.099 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 33.257999999999996 - type: precision_at_5 value: 20.465 - type: recall_at_1 value: 78.036 - type: recall_at_10 value: 94.517 - type: recall_at_100 value: 96.828 - type: recall_at_1000 value: 98.261 - type: recall_at_3 value: 91.12 - type: recall_at_5 value: 92.946 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 20.191 - type: map_at_10 value: 32.369 - type: map_at_100 value: 34.123999999999995 - type: map_at_1000 value: 34.317 - type: map_at_3 value: 28.71 - type: map_at_5 value: 30.607 - type: mrr_at_1 value: 40.894999999999996 - type: mrr_at_10 value: 48.842 - type: mrr_at_100 value: 49.599 - type: mrr_at_1000 value: 49.647000000000006 - type: mrr_at_3 value: 46.785 - type: mrr_at_5 value: 47.672 - type: ndcg_at_1 value: 40.894999999999996 - type: ndcg_at_10 value: 39.872 - type: ndcg_at_100 value: 46.126 - type: ndcg_at_1000 value: 49.476 - type: ndcg_at_3 value: 37.153000000000006 - type: ndcg_at_5 value: 37.433 - type: precision_at_1 value: 40.894999999999996 - type: precision_at_10 value: 10.818 - type: precision_at_100 value: 1.73 - type: precision_at_1000 value: 0.231 - type: precision_at_3 value: 25.051000000000002 - type: precision_at_5 value: 17.531 - type: recall_at_1 value: 20.191 - type: recall_at_10 value: 45.768 - type: recall_at_100 value: 68.82000000000001 - type: recall_at_1000 value: 89.133 - type: recall_at_3 value: 33.296 - type: recall_at_5 value: 38.022 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 39.257 - type: map_at_10 value: 61.467000000000006 - type: map_at_100 value: 62.364 - type: map_at_1000 value: 62.424 - type: map_at_3 value: 58.228 - type: map_at_5 value: 60.283 - type: mrr_at_1 value: 78.515 - type: mrr_at_10 value: 84.191 - type: mrr_at_100 value: 84.378 - type: mrr_at_1000 value: 84.385 - type: mrr_at_3 value: 83.284 - type: mrr_at_5 value: 83.856 - type: ndcg_at_1 value: 78.515 - type: ndcg_at_10 value: 69.78999999999999 - type: ndcg_at_100 value: 72.886 - type: ndcg_at_1000 value: 74.015 - type: ndcg_at_3 value: 65.23 - type: ndcg_at_5 value: 67.80199999999999 - type: precision_at_1 value: 78.515 - type: precision_at_10 value: 14.519000000000002 - type: precision_at_100 value: 1.694 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 41.702 - type: precision_at_5 value: 27.046999999999997 - type: recall_at_1 value: 39.257 - type: recall_at_10 value: 72.59299999999999 - type: recall_at_100 value: 84.679 - type: recall_at_1000 value: 92.12 - type: recall_at_3 value: 62.552 - type: recall_at_5 value: 67.616 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 91.5152 - type: ap value: 87.64584669595709 - type: f1 value: 91.50605576428437 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 21.926000000000002 - type: map_at_10 value: 34.049 - type: map_at_100 value: 35.213 - type: map_at_1000 value: 35.265 - type: map_at_3 value: 30.309 - type: map_at_5 value: 32.407000000000004 - type: mrr_at_1 value: 22.55 - type: mrr_at_10 value: 34.657 - type: mrr_at_100 value: 35.760999999999996 - type: mrr_at_1000 value: 35.807 - type: mrr_at_3 value: 30.989 - type: mrr_at_5 value: 33.039 - type: ndcg_at_1 value: 22.55 - type: ndcg_at_10 value: 40.842 - type: ndcg_at_100 value: 46.436 - type: ndcg_at_1000 value: 47.721999999999994 - type: ndcg_at_3 value: 33.209 - type: ndcg_at_5 value: 36.943 - type: precision_at_1 value: 22.55 - type: precision_at_10 value: 6.447 - type: precision_at_100 value: 0.9249999999999999 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.136000000000001 - type: precision_at_5 value: 10.381 - type: recall_at_1 value: 21.926000000000002 - type: recall_at_10 value: 61.724999999999994 - type: recall_at_100 value: 87.604 - type: recall_at_1000 value: 97.421 - type: recall_at_3 value: 40.944 - type: recall_at_5 value: 49.915 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.54765161878704 - type: f1 value: 93.3298945415573 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 75.71591427268582 - type: f1 value: 59.32113870474471 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 75.83053127101547 - type: f1 value: 73.60757944876475 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 78.72562205783457 - type: f1 value: 78.63761662505502 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 33.37935633767996 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 31.55270546130387 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.462692753143834 - type: mrr value: 31.497569753511563 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.646 - type: map_at_10 value: 12.498 - type: map_at_100 value: 15.486 - type: map_at_1000 value: 16.805999999999997 - type: map_at_3 value: 9.325 - type: map_at_5 value: 10.751 - type: mrr_at_1 value: 43.034 - type: mrr_at_10 value: 52.662 - type: mrr_at_100 value: 53.189 - type: mrr_at_1000 value: 53.25 - type: mrr_at_3 value: 50.929 - type: mrr_at_5 value: 51.92 - type: ndcg_at_1 value: 41.796 - type: ndcg_at_10 value: 33.477000000000004 - type: ndcg_at_100 value: 29.996000000000002 - type: ndcg_at_1000 value: 38.864 - type: ndcg_at_3 value: 38.940000000000005 - type: ndcg_at_5 value: 36.689 - type: precision_at_1 value: 43.034 - type: precision_at_10 value: 24.799 - type: precision_at_100 value: 7.432999999999999 - type: precision_at_1000 value: 1.9929999999999999 - type: precision_at_3 value: 36.842000000000006 - type: precision_at_5 value: 32.135999999999996 - type: recall_at_1 value: 5.646 - type: recall_at_10 value: 15.963 - type: recall_at_100 value: 29.492 - type: recall_at_1000 value: 61.711000000000006 - type: recall_at_3 value: 10.585 - type: recall_at_5 value: 12.753999999999998 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 27.602 - type: map_at_10 value: 41.545 - type: map_at_100 value: 42.644999999999996 - type: map_at_1000 value: 42.685 - type: map_at_3 value: 37.261 - type: map_at_5 value: 39.706 - type: mrr_at_1 value: 31.141000000000002 - type: mrr_at_10 value: 44.139 - type: mrr_at_100 value: 44.997 - type: mrr_at_1000 value: 45.025999999999996 - type: mrr_at_3 value: 40.503 - type: mrr_at_5 value: 42.64 - type: ndcg_at_1 value: 31.141000000000002 - type: ndcg_at_10 value: 48.995 - type: ndcg_at_100 value: 53.788000000000004 - type: ndcg_at_1000 value: 54.730000000000004 - type: ndcg_at_3 value: 40.844 - type: ndcg_at_5 value: 44.955 - type: precision_at_1 value: 31.141000000000002 - type: precision_at_10 value: 8.233 - type: precision_at_100 value: 1.093 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 18.579 - type: precision_at_5 value: 13.533999999999999 - type: recall_at_1 value: 27.602 - type: recall_at_10 value: 69.216 - type: recall_at_100 value: 90.252 - type: recall_at_1000 value: 97.27 - type: recall_at_3 value: 47.987 - type: recall_at_5 value: 57.438 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.949 - type: map_at_10 value: 84.89999999999999 - type: map_at_100 value: 85.531 - type: map_at_1000 value: 85.548 - type: map_at_3 value: 82.027 - type: map_at_5 value: 83.853 - type: mrr_at_1 value: 81.69999999999999 - type: mrr_at_10 value: 87.813 - type: mrr_at_100 value: 87.917 - type: mrr_at_1000 value: 87.91799999999999 - type: mrr_at_3 value: 86.938 - type: mrr_at_5 value: 87.53999999999999 - type: ndcg_at_1 value: 81.75 - type: ndcg_at_10 value: 88.55499999999999 - type: ndcg_at_100 value: 89.765 - type: ndcg_at_1000 value: 89.871 - type: ndcg_at_3 value: 85.905 - type: ndcg_at_5 value: 87.41 - type: precision_at_1 value: 81.75 - type: precision_at_10 value: 13.403 - type: precision_at_100 value: 1.528 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.597 - type: precision_at_5 value: 24.69 - type: recall_at_1 value: 70.949 - type: recall_at_10 value: 95.423 - type: recall_at_100 value: 99.509 - type: recall_at_1000 value: 99.982 - type: recall_at_3 value: 87.717 - type: recall_at_5 value: 92.032 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 51.76962893449579 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 62.32897690686379 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.478 - type: map_at_10 value: 11.994 - type: map_at_100 value: 13.977 - type: map_at_1000 value: 14.295 - type: map_at_3 value: 8.408999999999999 - type: map_at_5 value: 10.024 - type: mrr_at_1 value: 22.1 - type: mrr_at_10 value: 33.526 - type: mrr_at_100 value: 34.577000000000005 - type: mrr_at_1000 value: 34.632000000000005 - type: mrr_at_3 value: 30.217 - type: mrr_at_5 value: 31.962000000000003 - type: ndcg_at_1 value: 22.1 - type: ndcg_at_10 value: 20.191 - type: ndcg_at_100 value: 27.954 - type: ndcg_at_1000 value: 33.491 - type: ndcg_at_3 value: 18.787000000000003 - type: ndcg_at_5 value: 16.378999999999998 - type: precision_at_1 value: 22.1 - type: precision_at_10 value: 10.69 - type: precision_at_100 value: 2.1919999999999997 - type: precision_at_1000 value: 0.35200000000000004 - type: precision_at_3 value: 17.732999999999997 - type: precision_at_5 value: 14.499999999999998 - type: recall_at_1 value: 4.478 - type: recall_at_10 value: 21.657 - type: recall_at_100 value: 44.54 - type: recall_at_1000 value: 71.542 - type: recall_at_3 value: 10.778 - type: recall_at_5 value: 14.687 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 82.82325259156718 - type: cos_sim_spearman value: 79.2463589100662 - type: euclidean_pearson value: 80.48318380496771 - type: euclidean_spearman value: 79.34451935199979 - type: manhattan_pearson value: 80.39041824178759 - type: manhattan_spearman value: 79.23002892700211 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 85.74130231431258 - type: cos_sim_spearman value: 78.36856568042397 - type: euclidean_pearson value: 82.48301631890303 - type: euclidean_spearman value: 78.28376980722732 - type: manhattan_pearson value: 82.43552075450525 - type: manhattan_spearman value: 78.22702443947126 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 79.96138619461459 - type: cos_sim_spearman value: 81.85436343502379 - type: euclidean_pearson value: 81.82895226665367 - type: euclidean_spearman value: 82.22707349602916 - type: manhattan_pearson value: 81.66303369445873 - type: manhattan_spearman value: 82.05030197179455 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 80.05481244198648 - type: cos_sim_spearman value: 80.85052504637808 - type: euclidean_pearson value: 80.86728419744497 - type: euclidean_spearman value: 81.033786401512 - type: manhattan_pearson value: 80.90107531061103 - type: manhattan_spearman value: 81.11374116827795 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 84.615220756399 - type: cos_sim_spearman value: 86.46858500002092 - type: euclidean_pearson value: 86.08307800247586 - type: euclidean_spearman value: 86.72691443870013 - type: manhattan_pearson value: 85.96155594487269 - type: manhattan_spearman value: 86.605909505275 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 82.14363913634436 - type: cos_sim_spearman value: 84.48430226487102 - type: euclidean_pearson value: 83.75303424801902 - type: euclidean_spearman value: 84.56762380734538 - type: manhattan_pearson value: 83.6135447165928 - type: manhattan_spearman value: 84.39898212616731 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 85.09909252554525 - type: cos_sim_spearman value: 85.70951402743276 - type: euclidean_pearson value: 87.1991936239908 - type: euclidean_spearman value: 86.07745840612071 - type: manhattan_pearson value: 87.25039137549952 - type: manhattan_spearman value: 85.99938746659761 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 63.529332093413615 - type: cos_sim_spearman value: 65.38177340147439 - type: euclidean_pearson value: 66.35278011412136 - type: euclidean_spearman value: 65.47147267032997 - type: manhattan_pearson value: 66.71804682408693 - type: manhattan_spearman value: 65.67406521423597 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 82.45802942885662 - type: cos_sim_spearman value: 84.8853341842566 - type: euclidean_pearson value: 84.60915021096707 - type: euclidean_spearman value: 85.11181242913666 - type: manhattan_pearson value: 84.38600521210364 - type: manhattan_spearman value: 84.89045417981723 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 85.92793380635129 - type: mrr value: 95.85834191226348 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 55.74400000000001 - type: map_at_10 value: 65.455 - type: map_at_100 value: 66.106 - type: map_at_1000 value: 66.129 - type: map_at_3 value: 62.719 - type: map_at_5 value: 64.441 - type: mrr_at_1 value: 58.667 - type: mrr_at_10 value: 66.776 - type: mrr_at_100 value: 67.363 - type: mrr_at_1000 value: 67.384 - type: mrr_at_3 value: 64.889 - type: mrr_at_5 value: 66.122 - type: ndcg_at_1 value: 58.667 - type: ndcg_at_10 value: 69.904 - type: ndcg_at_100 value: 72.807 - type: ndcg_at_1000 value: 73.423 - type: ndcg_at_3 value: 65.405 - type: ndcg_at_5 value: 67.86999999999999 - type: precision_at_1 value: 58.667 - type: precision_at_10 value: 9.3 - type: precision_at_100 value: 1.08 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 25.444 - type: precision_at_5 value: 17 - type: recall_at_1 value: 55.74400000000001 - type: recall_at_10 value: 82.122 - type: recall_at_100 value: 95.167 - type: recall_at_1000 value: 100 - type: recall_at_3 value: 70.14399999999999 - type: recall_at_5 value: 76.417 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.86534653465347 - type: cos_sim_ap value: 96.54142419791388 - type: cos_sim_f1 value: 93.07535641547861 - type: cos_sim_precision value: 94.81327800829875 - type: cos_sim_recall value: 91.4 - type: dot_accuracy value: 99.86435643564356 - type: dot_ap value: 96.53682260449868 - type: dot_f1 value: 92.98515104966718 - type: dot_precision value: 95.27806925498426 - type: dot_recall value: 90.8 - type: euclidean_accuracy value: 99.86336633663366 - type: euclidean_ap value: 96.5228676185697 - type: euclidean_f1 value: 92.9735234215886 - type: euclidean_precision value: 94.70954356846472 - type: euclidean_recall value: 91.3 - type: manhattan_accuracy value: 99.85841584158416 - type: manhattan_ap value: 96.50392760934032 - type: manhattan_f1 value: 92.84642321160581 - type: manhattan_precision value: 92.8928928928929 - type: manhattan_recall value: 92.80000000000001 - type: max_accuracy value: 99.86534653465347 - type: max_ap value: 96.54142419791388 - type: max_f1 value: 93.07535641547861 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 61.08285408766616 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 35.640675309010604 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 53.20333913710715 - type: mrr value: 54.088813555725324 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.79465221925075 - type: cos_sim_spearman value: 30.530816059163634 - type: dot_pearson value: 31.364837244718043 - type: dot_spearman value: 30.79726823684003 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.22599999999999998 - type: map_at_10 value: 1.735 - type: map_at_100 value: 8.978 - type: map_at_1000 value: 20.851 - type: map_at_3 value: 0.613 - type: map_at_5 value: 0.964 - type: mrr_at_1 value: 88 - type: mrr_at_10 value: 92.867 - type: mrr_at_100 value: 92.867 - type: mrr_at_1000 value: 92.867 - type: mrr_at_3 value: 92.667 - type: mrr_at_5 value: 92.667 - type: ndcg_at_1 value: 82 - type: ndcg_at_10 value: 73.164 - type: ndcg_at_100 value: 51.878 - type: ndcg_at_1000 value: 44.864 - type: ndcg_at_3 value: 79.184 - type: ndcg_at_5 value: 76.39 - type: precision_at_1 value: 88 - type: precision_at_10 value: 76.2 - type: precision_at_100 value: 52.459999999999994 - type: precision_at_1000 value: 19.692 - type: precision_at_3 value: 82.667 - type: precision_at_5 value: 80 - type: recall_at_1 value: 0.22599999999999998 - type: recall_at_10 value: 1.942 - type: recall_at_100 value: 12.342 - type: recall_at_1000 value: 41.42 - type: recall_at_3 value: 0.637 - type: recall_at_5 value: 1.034 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 3.567 - type: map_at_10 value: 13.116 - type: map_at_100 value: 19.39 - type: map_at_1000 value: 20.988 - type: map_at_3 value: 7.109 - type: map_at_5 value: 9.950000000000001 - type: mrr_at_1 value: 42.857 - type: mrr_at_10 value: 57.404999999999994 - type: mrr_at_100 value: 58.021 - type: mrr_at_1000 value: 58.021 - type: mrr_at_3 value: 54.762 - type: mrr_at_5 value: 56.19 - type: ndcg_at_1 value: 38.775999999999996 - type: ndcg_at_10 value: 30.359 - type: ndcg_at_100 value: 41.284 - type: ndcg_at_1000 value: 52.30200000000001 - type: ndcg_at_3 value: 36.744 - type: ndcg_at_5 value: 34.326 - type: precision_at_1 value: 42.857 - type: precision_at_10 value: 26.122 - type: precision_at_100 value: 8.082 - type: precision_at_1000 value: 1.559 - type: precision_at_3 value: 40.136 - type: precision_at_5 value: 35.510000000000005 - type: recall_at_1 value: 3.567 - type: recall_at_10 value: 19.045 - type: recall_at_100 value: 49.979 - type: recall_at_1000 value: 84.206 - type: recall_at_3 value: 8.52 - type: recall_at_5 value: 13.103000000000002 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 68.8394 - type: ap value: 13.454399712443099 - type: f1 value: 53.04963076364322 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 60.546123372948514 - type: f1 value: 60.86952793277713 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 49.10042955060234 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.03308100375514 - type: cos_sim_ap value: 71.08284605869684 - type: cos_sim_f1 value: 65.42539436255494 - type: cos_sim_precision value: 64.14807302231237 - type: cos_sim_recall value: 66.75461741424802 - type: dot_accuracy value: 84.68736961316088 - type: dot_ap value: 69.20524036530992 - type: dot_f1 value: 63.54893953365829 - type: dot_precision value: 63.45698500394633 - type: dot_recall value: 63.641160949868066 - type: euclidean_accuracy value: 85.07480479227513 - type: euclidean_ap value: 71.14592761009864 - type: euclidean_f1 value: 65.43814432989691 - type: euclidean_precision value: 63.95465994962216 - type: euclidean_recall value: 66.99208443271768 - type: manhattan_accuracy value: 85.06288370984085 - type: manhattan_ap value: 71.07289742593868 - type: manhattan_f1 value: 65.37585421412301 - type: manhattan_precision value: 62.816147859922175 - type: manhattan_recall value: 68.15303430079156 - type: max_accuracy value: 85.07480479227513 - type: max_ap value: 71.14592761009864 - type: max_f1 value: 65.43814432989691 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 87.79058485659952 - type: cos_sim_ap value: 83.7183187008759 - type: cos_sim_f1 value: 75.86921142180798 - type: cos_sim_precision value: 73.00683371298405 - type: cos_sim_recall value: 78.96519864490298 - type: dot_accuracy value: 87.0085768618776 - type: dot_ap value: 81.87467488474279 - type: dot_f1 value: 74.04188363990559 - type: dot_precision value: 72.10507114191901 - type: dot_recall value: 76.08561749307053 - type: euclidean_accuracy value: 87.8332751193387 - type: euclidean_ap value: 83.83585648120315 - type: euclidean_f1 value: 76.02582177042369 - type: euclidean_precision value: 73.36388371759989 - type: euclidean_recall value: 78.88820449645827 - type: manhattan_accuracy value: 87.87208444910156 - type: manhattan_ap value: 83.8101950642973 - type: manhattan_f1 value: 75.90454195535027 - type: manhattan_precision value: 72.44419564761039 - type: manhattan_recall value: 79.71204188481676 - type: max_accuracy value: 87.87208444910156 - type: max_ap value: 83.83585648120315 - type: max_f1 value: 76.02582177042369 license: mit language: - en pipeline_tag: sentence-similarity ---
Model List | Usage | Evaluation | Train | License
For more details please refer to our GitHub repo: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding). [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md) FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search. And it also can be used in vector databases for LLMs. ************* 🌟**Updates**🌟 ************* - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗** - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada: - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset. ## Model List `bge` is short for `BAAI general embedding`. | Model | Language | Description | query instruction for retrieval | |:-------------------------------|:--------:| :--------:| :--------:| | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | rank **2nd** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | Chinese | This model is trained without instruction, and rank **2nd** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | a base-scale model but has similar ability with `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` | ## Usage * **Using FlagEmbedding** ``` pip install -U FlagEmbedding ``` See [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding. ```python from FlagEmbedding import FlagModel sentences = ["样例数据-1", "样例数据-2"] model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:") embeddings = model.encode(sentences) print(embeddings) # for retrieval task, please use encode_queries() which will automatically add the instruction to each query # corpus in retrieval task can still use encode() or encode_corpus() queries = ['query_1', 'query_2'] passages = ["样例段落-1", "样例段落-2"] q_embeddings = model.encode_queries(queries) p_embeddings = model.encode(passages) scores = q_embeddings @ p_embeddings.T ``` The value of argument `query_instruction_for_retrieval` see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). FlagModel will use all available GPUs when encoding, please set `os.environ["CUDA_VISIBLE_DEVICES"]` to choose GPU. * **Using Sentence-Transformers** Using this model also is easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` ```python from sentence_transformers import SentenceTransformer sentences = ["样例数据-1", "样例数据-2"] model = SentenceTransformer('BAAI/bge-large-zh') embeddings = model.encode(sentences, normalize_embeddings=True) print(embeddings) ``` For retrieval task, each query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). ```python from sentence_transformers import SentenceTransformer queries = ["手机开不了机怎么办?"] passages = ["样例段落-1", "样例段落-2"] instruction = "为这个句子生成表示以用于检索相关文章:" model = SentenceTransformer('BAAI/bge-large-zh') q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True) p_embeddings = model.encode(passages, normalize_embeddings=True) scores = q_embeddings @ p_embeddings.T ``` * **Using HuggingFace Transformers** With transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of first token (i.e., [CLS]) as the sentence embedding. ```python from transformers import AutoTokenizer, AutoModel import torch # Sentences we want sentence embeddings for sentences = ["样例数据-1", "样例数据-2"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh') model = AutoModel.from_pretrained('BAAI/bge-large-zh') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # for retrieval task, add an instruction to query # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = model_output[0][:, 0] # normalize embeddings sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:", sentence_embeddings) ``` ## Evaluation `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!** More details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). - **MTEB**: | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) | |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | [**bge-large-en**](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | **63.98** | **53.9** | **46.98** | 85.8 | **59.48** | 81.56 | 32.06 | **76.21** | | [**bge-base-en**](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 | | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 | | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 | | [**bge-small-en**](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 | | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 | | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 | | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 | | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 | | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 | | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 | | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 | | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 | | [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 384 | 512 | 56.53 | 42.69 | 41.81 | 82.41 | 58.44 | 79.8 | 27.9 | 63.21 | | [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 384 | 512 | 56.26 | 41.95 | 42.35 | 82.37 | 58.04 | 78.9 | 30.81 | 63.05 | | [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 768 | 512 | 56.00 | 41.88 | 41.1 | 82.54 | 53.14 | 76.51 | 30.36 | 66.68 | | [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 768 | 512 | 55.27 | 33.63 | 40.21 | 85.18 | 53.09 | 81.14 | 31.39 | 69.81 | - **C-MTEB**: We create a benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks. Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction. | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | [**bge-large-zh**](https://huggingface.co/BAAI/bge-large-zh) | 1024 | **64.20** | **71.53** | **53.23** | **78.94** | 72.26 | **65.11** | 48.39 | | [**bge-large-zh-noinstruct**](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 50.98 | 76.77 | **72.49** | 64.91 | **50.01** | | [**BAAI/bge-base-zh**](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 52.05 | 77.5 | 70.98 | 64.91 | 47.63 | | [**BAAI/bge-small-zh**](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 46.87 | 70.35 | 67.78 | 61.48 | 45.09 | | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 |56.91 | 48.15 | 63.99 | 70.28 | 59.34 | 47.68 | | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 |54.75 | 48.64 | 64.3 | 71.22 | 59.66 | 48.88 | | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 40.61 | 69.56 | 67.38 | 54.28 | 45.68 | | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 39.41 | 66.62 | 65.29 | 49.25 | 44.39 | | [text2vec](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 41.71 | 67.41 | 65.18 | 49.45 | 37.66 | | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 41.98 | 70.86 | 63.42 | 49.16 | 30.02 | ## Train This section will introduce the way we used to train the general embedding. The training scripts are in [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md), and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/pretrain/README.md) and [fine-tune](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/finetune/README.md). **1. RetroMAE Pre-train** We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE), which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)). The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720. In retromae, the mask ratio of encoder and decoder are 0.3, and 0.5 respectively. We used the AdamW optimizer and the learning rate is 2e-5. **Pre-training data**: - English: - [Pile](https://pile.eleuther.ai/) - [wikipedia](https://huggingface.co/datasets/wikipedia) - [msmarco](https://huggingface.co/datasets/Tevatron/msmarco-passage-corpus) - Chinese: - Subset of [wudao](https://github.com/BAAI-WuDao/Data) - [baidu-baike](https://baike.baidu.com/) **2. Finetune** We fine-tune the model using a contrastive objective. The format of input data is a triple`(query, positive, negative)`. Besides the negative in the triple, we also adopt in-batch negatives strategy. We employ the cross-device negatives sharing method to share negatives among different GPUs, which can dramatically **increase the number of negatives**. We trained our model on 48 A100(40G) GPUs with a large batch size of 32,768 (so there are **65,535** negatives for each query in a batch). We used the AdamW optimizer and the learning rate is 1e-5. The temperature for contrastive loss is 0.01. For the version with `*-instrcution`, we add instruction to the query for retrieval task in the training. For english, the instruction is `Represent this sentence for searching relevant passages: `; For chinese, the instruction is `为这个句子生成表示以用于检索相关文章:`. In the evaluation, the instruction should be added for sentence to passages retrieval task, not be added for other tasks. The finetune script is accessible in this repository: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md). You can easily finetune your model with it. **Training data**: - For English, we collect 230M text pairs from [wikipedia](https://huggingface.co/datasets/wikipedia), [cc-net](https://github.com/facebookresearch/cc_net), and so on. - For chinese, we collect 120M text pairs from [wudao](https://github.com/BAAI-WuDao/Data), [simclue](https://github.com/CLUEbenchmark/SimCLUE) and so on. **The data collection is to be released in the future.** We will continually update the embedding models and training codes, hoping to promote the development of the embedding model community. ## License FlagEmbedding is licensed under [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.