ldwang commited on
Commit
c9aa8a3
·
1 Parent(s): 774622d
Files changed (1) hide show
  1. README.md +34 -16
README.md CHANGED
@@ -2616,6 +2616,7 @@ language:
2616
  <a href="#evaluation">Evaluation</a> |
2617
  <a href="#train">Train</a> |
2618
  <a href="#contact">Contact</a> |
 
2619
  <a href="#license">License</a>
2620
  <p>
2621
  </h4>
@@ -2629,6 +2630,7 @@ FlagEmbedding can map any text to a low-dimensional dense vector which can be us
2629
  And it also can be used in vector databases for LLMs.
2630
 
2631
  ************* 🌟**Updates**🌟 *************
 
2632
  - 09/12/2023: New Release:
2633
  - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
2634
  - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
@@ -2663,10 +2665,9 @@ And it also can be used in vector databases for LLMs.
2663
 
2664
  \*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
2665
 
2666
- \**: Different embedding model, reranker is a cross-encoder, which cannot be used to generate embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
2667
  For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
2668
 
2669
-
2670
  ## Frequently asked questions
2671
 
2672
  <details>
@@ -2729,7 +2730,9 @@ If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagO
2729
  from FlagEmbedding import FlagModel
2730
  sentences_1 = ["样例数据-1", "样例数据-2"]
2731
  sentences_2 = ["样例数据-3", "样例数据-4"]
2732
- model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
 
 
2733
  embeddings_1 = model.encode(sentences_1)
2734
  embeddings_2 = model.encode(sentences_2)
2735
  similarity = embeddings_1 @ embeddings_2.T
@@ -2760,7 +2763,7 @@ pip install -U sentence-transformers
2760
  from sentence_transformers import SentenceTransformer
2761
  sentences_1 = ["样例数据-1", "样例数据-2"]
2762
  sentences_2 = ["样例数据-3", "样例数据-4"]
2763
- model = SentenceTransformer('BAAI/bge-large-zh')
2764
  embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
2765
  embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
2766
  similarity = embeddings_1 @ embeddings_2.T
@@ -2775,7 +2778,7 @@ queries = ['query_1', 'query_2']
2775
  passages = ["样例文档-1", "样例文档-2"]
2776
  instruction = "为这个句子生成表示以用于检索相关文章:"
2777
 
2778
- model = SentenceTransformer('BAAI/bge-large-zh')
2779
  q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
2780
  p_embeddings = model.encode(passages, normalize_embeddings=True)
2781
  scores = q_embeddings @ p_embeddings.T
@@ -2786,7 +2789,7 @@ scores = q_embeddings @ p_embeddings.T
2786
  You can use `bge` in langchain like this:
2787
  ```python
2788
  from langchain.embeddings import HuggingFaceBgeEmbeddings
2789
- model_name = "BAAI/bge-small-en"
2790
  model_kwargs = {'device': 'cuda'}
2791
  encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
2792
  model = HuggingFaceBgeEmbeddings(
@@ -2810,8 +2813,8 @@ import torch
2810
  sentences = ["样例数据-1", "样例数据-2"]
2811
 
2812
  # Load model from HuggingFace Hub
2813
- tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
2814
- model = AutoModel.from_pretrained('BAAI/bge-large-zh')
2815
  model.eval()
2816
 
2817
  # Tokenize sentences
@@ -2831,6 +2834,7 @@ print("Sentence embeddings:", sentence_embeddings)
2831
 
2832
  ### Usage for Reranker
2833
 
 
2834
  You can get a relevance score by inputting query and passage to the reranker.
2835
  The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
2836
 
@@ -2840,10 +2844,10 @@ The reranker is optimized based cross-entropy loss, so the relevance score is no
2840
  pip install -U FlagEmbedding
2841
  ```
2842
 
2843
- Get relevance score:
2844
  ```python
2845
  from FlagEmbedding import FlagReranker
2846
- reranker = FlagReranker('BAAI/bge-reranker-base', use_fp16=True) #use fp16 can speed up computing
2847
 
2848
  score = reranker.compute_score(['query', 'passage'])
2849
  print(score)
@@ -2857,10 +2861,10 @@ print(scores)
2857
 
2858
  ```python
2859
  import torch
2860
- from transformers import AutoModelForSequenceClassification, AutoTokenizer, BatchEncoding, PreTrainedTokenizerFast
2861
 
2862
- tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-base')
2863
- model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base')
2864
  model.eval()
2865
 
2866
  pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
@@ -2926,7 +2930,7 @@ Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C
2926
  - **Reranking**:
2927
  See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
2928
 
2929
- | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MmarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
2930
  |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
2931
  | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
2932
  | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
@@ -2939,13 +2943,13 @@ See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for
2939
  | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
2940
  | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
2941
 
2942
- \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval task
2943
 
2944
  ## Train
2945
 
2946
  ### BAAI Embedding
2947
 
2948
- We pre-train the models using retromae and train them on large-scale pairs data using contrastive learning.
2949
  **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
2950
  We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
2951
  Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
@@ -2968,6 +2972,20 @@ If you have any question or suggestion related to this project, feel free to ope
2968
  You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]).
2969
 
2970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2971
  ## License
2972
  FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
2973
 
 
2616
  <a href="#evaluation">Evaluation</a> |
2617
  <a href="#train">Train</a> |
2618
  <a href="#contact">Contact</a> |
2619
+ <a href="#citation">Citation</a> |
2620
  <a href="#license">License</a>
2621
  <p>
2622
  </h4>
 
2630
  And it also can be used in vector databases for LLMs.
2631
 
2632
  ************* 🌟**Updates**🌟 *************
2633
+ - 09/15/2023: Release [paper](https://arxiv.org/pdf/2309.07597.pdf) and [dataset](https://data.baai.ac.cn/details/BAAI-MTP).
2634
  - 09/12/2023: New Release:
2635
  - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
2636
  - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
 
2665
 
2666
  \*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
2667
 
2668
+ \**: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
2669
  For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
2670
 
 
2671
  ## Frequently asked questions
2672
 
2673
  <details>
 
2730
  from FlagEmbedding import FlagModel
2731
  sentences_1 = ["样例数据-1", "样例数据-2"]
2732
  sentences_2 = ["样例数据-3", "样例数据-4"]
2733
+ model = FlagModel('BAAI/bge-large-zh-v1.5',
2734
+ query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
2735
+ use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
2736
  embeddings_1 = model.encode(sentences_1)
2737
  embeddings_2 = model.encode(sentences_2)
2738
  similarity = embeddings_1 @ embeddings_2.T
 
2763
  from sentence_transformers import SentenceTransformer
2764
  sentences_1 = ["样例数据-1", "样例数据-2"]
2765
  sentences_2 = ["样例数据-3", "样例数据-4"]
2766
+ model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
2767
  embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
2768
  embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
2769
  similarity = embeddings_1 @ embeddings_2.T
 
2778
  passages = ["样例文档-1", "样例文档-2"]
2779
  instruction = "为这个句子生成表示以用于检索相关文章:"
2780
 
2781
+ model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
2782
  q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
2783
  p_embeddings = model.encode(passages, normalize_embeddings=True)
2784
  scores = q_embeddings @ p_embeddings.T
 
2789
  You can use `bge` in langchain like this:
2790
  ```python
2791
  from langchain.embeddings import HuggingFaceBgeEmbeddings
2792
+ model_name = "BAAI/bge-large-en-v1.5"
2793
  model_kwargs = {'device': 'cuda'}
2794
  encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
2795
  model = HuggingFaceBgeEmbeddings(
 
2813
  sentences = ["样例数据-1", "样例数据-2"]
2814
 
2815
  # Load model from HuggingFace Hub
2816
+ tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5')
2817
+ model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5')
2818
  model.eval()
2819
 
2820
  # Tokenize sentences
 
2834
 
2835
  ### Usage for Reranker
2836
 
2837
+ Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
2838
  You can get a relevance score by inputting query and passage to the reranker.
2839
  The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
2840
 
 
2844
  pip install -U FlagEmbedding
2845
  ```
2846
 
2847
+ Get relevance scores (higher scores indicate more relevance):
2848
  ```python
2849
  from FlagEmbedding import FlagReranker
2850
+ reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
2851
 
2852
  score = reranker.compute_score(['query', 'passage'])
2853
  print(score)
 
2861
 
2862
  ```python
2863
  import torch
2864
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
2865
 
2866
+ tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
2867
+ model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
2868
  model.eval()
2869
 
2870
  pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
 
2930
  - **Reranking**:
2931
  See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
2932
 
2933
+ | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
2934
  |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
2935
  | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
2936
  | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
 
2943
  | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
2944
  | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
2945
 
2946
+ \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks
2947
 
2948
  ## Train
2949
 
2950
  ### BAAI Embedding
2951
 
2952
+ We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning.
2953
  **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
2954
  We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
2955
  Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
 
2972
  You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]).
2973
 
2974
 
2975
+ ## Citation
2976
+
2977
+ If you find our work helpful, please cite us:
2978
+ ```
2979
+ @misc{bge_embedding,
2980
+ title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
2981
+ author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
2982
+ year={2023},
2983
+ eprint={2309.07597},
2984
+ archivePrefix={arXiv},
2985
+ primaryClass={cs.CL}
2986
+ }
2987
+ ```
2988
+
2989
  ## License
2990
  FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
2991