File size: 2,022 Bytes
bc7d330 b98cc67 bc7d330 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
tags:
- vision
inference: false
---
# SegGPT model
The SegGPT model was proposed in [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
## Model description
SegGPT employs a decoder-only (GPT-like) Transformer that can generate a segmentation mask given an input image, a prompt image and its corresponding prompt mask.
The model achieves remarkable one-shot results with 56.1 mIoU on COCO-20 and 85.6 mIoU on FSS-1000.
## Intended uses & limitations
You can use the raw model for one-shot image segmentation.
### How to use
Here's how to use the model for one-shot semantic segmentation:
```python
import torch
from datasets import load_dataset
from transformers import SegGptImageProcessor, SegGptForImageSegmentation
model_id = "BAAI/seggpt-vit-large"
image_processor = SegGptImageProcessor.from_pretrained(checkpoint)
model = SegGptForImageSegmentation.from_pretrained(checkpoint)
dataset_id = "EduardoPacheco/FoodSeg103"
ds = load_dataset(dataset_id, split="train")
# Number of labels in FoodSeg103 (not including background)
num_labels = 103
image_input = ds[4]["image"]
ground_truth = ds[4]["label"]
image_prompt = ds[29]["image"]
mask_prompt = ds[29]["label"]
inputs = image_processor(
images=image_input,
prompt_images=image_prompt,
prompt_masks=mask_prompt,
num_labels=num_labels,
return_tensors="pt"
)
with torch.no_grad():
outputs = model(**inputs)
target_sizes = [image_input.size[::-1]]
mask = image_processor.post_process_semantic_segmentation(outputs, target_sizes, num_labels=num_labels)[0]
```
### BibTeX entry and citation info
```bibtex
@misc{wang2023seggpt,
title={SegGPT: Segmenting Everything In Context},
author={Xinlong Wang and Xiaosong Zhang and Yue Cao and Wen Wang and Chunhua Shen and Tiejun Huang},
year={2023},
eprint={2304.03284},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
``` |