File size: 2,402 Bytes
87aaad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: nlp_1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nlp_1

This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4215
- Accuracy: 0.9037
- Precision: 0.8944
- Recall: 0.9025
- F1: 0.8968

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.3252        | 1.0   | 48   | 0.4194          | 0.8670   | 0.8671    | 0.8619 | 0.8617 |
| 0.1803        | 2.0   | 96   | 0.3779          | 0.8853   | 0.8807    | 0.8788 | 0.8773 |
| 0.1713        | 3.0   | 144  | 0.4097          | 0.8945   | 0.8864    | 0.8924 | 0.8857 |
| 0.1359        | 4.0   | 192  | 0.4012          | 0.8945   | 0.8919    | 0.8841 | 0.8873 |
| 0.1201        | 5.0   | 240  | 0.3770          | 0.8899   | 0.8809    | 0.8876 | 0.8818 |
| 0.0735        | 6.0   | 288  | 0.4204          | 0.8991   | 0.8934    | 0.8975 | 0.8921 |
| 0.0807        | 7.0   | 336  | 0.4092          | 0.9083   | 0.9059    | 0.9020 | 0.9024 |
| 0.1066        | 8.0   | 384  | 0.4181          | 0.8991   | 0.8894    | 0.8928 | 0.8903 |
| 0.0615        | 9.0   | 432  | 0.4212          | 0.9083   | 0.8988    | 0.9066 | 0.9014 |
| 0.071         | 10.0  | 480  | 0.4215          | 0.9037   | 0.8944    | 0.9025 | 0.8968 |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1