--- library_name: transformers license: apache-2.0 datasets: - pszemraj/flan-subsets-deduped language: - en base_model: pszemraj/tFINE-900m-e16-d32-1024ctx pipeline_tag: text2text-generation --- # BEE-spoke-data/tFINE-900m-e16-d32-flan This is a basic text-to-text "instruct" model, similar to Google's original [flan-t5](https://huggingface.co/collections/google/flan-t5-release-65005c39e3201fff885e22fb) model series (but not trained for as long). Fine-tuned from [the base model](https://hf.co/pszemraj/tFINE-900m-e16-d32-1024ctx) on the `pszemraj/flan-subsets-deduped` dataset, subset `flan-v2` for 1 epoch. It achieves the following results on the evaluation set: - Loss: 1.4134 - Rouge1: 62.9142 - Rouge2: 22.5279 - Rougel: 61.4902 - Rougelsum: 61.7795 - Gen Len: 12.0586 - Num Input Tokens Seen: 1931815668 ## Usage Example ```py from transformers import pipeline pipe = pipeline( "text2text-generation", model="BEE-spoke-data/tFINE-900m-e16-d32-flan", ) prompt = "What color is tuesday?" res = pipe(prompt, max_new_tokens=96, top_k=4, penalty_alpha=0.6) print(res[0]["generated_text"]) ``` ## Quick eval Quick eval for: `BEE-spoke-data/tFINE-900m-e16-d32-flan` hf (pretrained=BEE-spoke-data/tFINE-900m-e16-d32-flan,trust_remote_code=True,dtype=bfloat16,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 8 | Tasks |Version| Filter |n-shot| Metric | |Value | |Stderr| |-------------|------:|----------------|-----:|-----------|---|-----:|---|------| |boolq | 2|none | 0|acc |↑ |0.6700|± |0.0082| |openbookqa | 1|none | 0|acc |↑ |0.1900|± |0.0176| | | |none | 0|acc_norm |↑ |0.2980|± |0.0205| |piqa | 1|none | 0|acc |↑ |0.6001|± |0.0114| | | |none | 0|acc_norm |↑ |0.6072|± |0.0114| |social_iqa | 0|none | 0|acc |↑ |0.4299|± |0.0112| |tinyArc | 0|none | 25|acc_norm |↑ |0.3214|± | N/A| |tinyGSM8k | 0|flexible-extract| 5|exact_match|↑ |0.0492|± | N/A| | | |strict-match | 5|exact_match|↑ |0.0380|± | N/A| |tinyHellaswag| 0|none | 10|acc_norm |↑ |0.4005|± | N/A| |tinyMMLU | 0|none | 0|acc_norm |↑ |0.2857|± | N/A| |winogrande | 1|none | 0|acc |↑ |0.4988|± |0.0141|