File size: 1,996 Bytes
ee588a5
 
c7b5ca4
 
ee588a5
4c62613
ee588a5
 
4c62613
 
ee588a5
 
 
4c62613
ee588a5
4c62613
 
 
 
ee588a5
c7b5ca4
 
ee588a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: BEE-spoke-data/tFINE-900m-e16-d32-instruct
tags:
- generated_from_trainer
datasets:
- pszemraj/infinity-instruct-7m-T2T_en
---


# BEE-spoke-data/tFINE-900m-e16-d32-instruct_2e

> second epoch of fine-tuning on the same dataset w/ different seed


This model is a fine-tuned version of [BEE-spoke-data/tFINE-900m-e16-d32-instruct](https://hf.co/BEE-spoke-data/tFINE-900m-e16-d32-instruct) on the pszemraj/infinity-instruct-7m-T2T_en dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1159
- Num Input Tokens Seen: 810839096


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 6969
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1.0

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:-----:|:---------------:|:-----------------:|
| 1.234         | 0.0969 | 2000  | 1.2439          | 78067836          |
| 1.2248        | 0.1938 | 4000  | 1.2256          | 156868756         |
| 1.2024        | 0.2907 | 6000  | 1.2009          | 235148092         |
| 1.2074        | 0.3876 | 8000  | 1.1777          | 313452856         |
| 1.1617        | 0.4845 | 10000 | 1.1597          | 392316428         |
| 1.1755        | 0.5815 | 12000 | 1.1437          | 471101508         |
| 1.1473        | 0.6784 | 14000 | 1.1321          | 549831184         |
| 1.1743        | 0.7753 | 16000 | 1.1244          | 628937800         |
| 1.137         | 0.8722 | 18000 | 1.1179          | 707117360         |
| 1.0713        | 0.9691 | 20000 | 1.1160          | 785755388         |