File size: 2,324 Bytes
400bfcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: llama2
base_model: lmsys/vicuna-7b-v1.5
tags:
- generated_from_trainer
model-index:
- name: finetune_cs_20
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetune_cs_20

This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9803

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7173        | 1.0   | 150  | 1.6256          |
| 1.5959        | 2.0   | 300  | 1.6775          |
| 0.5699        | 3.0   | 450  | 1.9236          |
| 0.4921        | 4.0   | 600  | 2.1318          |
| 0.3044        | 5.0   | 750  | 2.2606          |
| 0.2809        | 6.0   | 900  | 2.3494          |
| 0.2299        | 7.0   | 1050 | 2.4316          |
| 0.2073        | 8.0   | 1200 | 2.4576          |
| 0.1851        | 9.0   | 1350 | 2.4981          |
| 0.1906        | 10.0  | 1500 | 2.6060          |
| 0.1616        | 11.0  | 1650 | 2.6427          |
| 0.1529        | 12.0  | 1800 | 2.6856          |
| 0.1453        | 13.0  | 1950 | 2.7683          |
| 0.1507        | 14.0  | 2100 | 2.7889          |
| 0.1607        | 15.0  | 2250 | 2.8477          |
| 0.1545        | 16.0  | 2400 | 2.8710          |
| 0.1598        | 17.0  | 2550 | 2.8968          |
| 0.1593        | 18.0  | 2700 | 2.9389          |
| 0.1479        | 19.0  | 2850 | 2.9629          |
| 0.1298        | 20.0  | 3000 | 2.9803          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0