hackelle commited on
Commit
2c06bab
1 Parent(s): 5bbc62c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +13 -17
README.md CHANGED
@@ -29,7 +29,7 @@ widget:
29
  :---:|:---:|:---:|:---:|:---:
30
  <a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/> | <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo">
31
 
32
- # Convnextv2_base pretained on BigEarthNet v2.0 using Sentinel-1 bands
33
 
34
  <!-- Optional images -->
35
  <!--
@@ -40,46 +40,42 @@ widget:
40
 
41
  This model was trained on the BigEarthNet v2.0 (also known as reBEN) dataset using the Sentinel-1 bands.
42
  It was trained using the following parameters:
43
- - Number of epochs: up to 100
44
- - with early stopping
45
- - after 5 epochs of no improvement
46
- - based on validation average precision (macro)
47
- - the weights published in this model card were obtained after 18 training epochs
48
  - Batch size: 512
49
  - Learning rate: 0.001
50
  - Dropout rate: 0.15
51
  - Drop Path rate: 0.15
52
- - Learning rate scheduler: LinearWarmupCosineAnnealing for 1000 warmup steps
53
  - Optimizer: AdamW
54
  - Seed: 42
55
 
56
- The model was trained using the training script of the
57
- [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts).
58
- See details in this repository for more information on how to train the model given the parameters above.
59
 
60
  ![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg)
61
 
62
  The model was evaluated on the test set of the BigEarthNet v2.0 dataset with the following results:
63
 
64
- | Metric | Value Macro | Value Micro |
65
  |:------------------|------------------:|------------------:|
66
  | Average Precision | 0.602211 | 0.789338 |
67
  | F1 Score | 0.548913 | 0.696168 |
68
- | Precision | 0.628933 | 0.735854 |
69
 
70
  # Example
71
- | Example Input (VV, VH and VV/VH bands from Sentinel-1) |
72
  |:---------------------------------------------------:|
73
  | ![[BigEarthNet](http://bigearth.net/)](example.png) |
74
 
75
- | Example Output - Labels | Example Output - Scores |
76
  |:--------------------------------------------------------------------------|--------------------------------------------------------------------------:|
77
  | <p> Agro-forestry areas <br> Arable land <br> Beaches, dunes, sands <br> ... <br> Urban fabric </p> | <p> 0.000005 <br> 0.000090 <br> 0.000094 <br> ... <br> 0.000058 </p> |
78
 
79
 
80
- To use the model, download the codes that defines the model architecture from the
81
  [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model using the
82
- code below. Note, that you have to install `configilm` to use the provided code.
83
 
84
  ```python
85
  from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
@@ -93,7 +89,7 @@ e.g.
93
  from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
94
 
95
  model = BigEarthNetv2_0_ImageClassifier.from_pretrained(
96
- "BIFOLD-BigEarthNetv2-0/BENv2-convnextv2_base-s1-v0.1.1")
97
  ```
98
 
99
  If you use this model in your research or the provided code, please cite the following papers:
 
29
  :---:|:---:|:---:|:---:|:---:
30
  <a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/> | <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo">
31
 
32
+ # Convnextv2_base pretrained on BigEarthNet v2.0 using Sentinel-1 bands
33
 
34
  <!-- Optional images -->
35
  <!--
 
40
 
41
  This model was trained on the BigEarthNet v2.0 (also known as reBEN) dataset using the Sentinel-1 bands.
42
  It was trained using the following parameters:
43
+ - Number of epochs: up to 100 (with early stopping after 5 epochs of no improvement based on validation average
44
+ precision macro)
 
 
 
45
  - Batch size: 512
46
  - Learning rate: 0.001
47
  - Dropout rate: 0.15
48
  - Drop Path rate: 0.15
49
+ - Learning rate scheduler: LinearWarmupCosineAnnealing for 1000 warmup steps
50
  - Optimizer: AdamW
51
  - Seed: 42
52
 
53
+ The weights published in this model card were obtained after 18 training epochs.
54
+ For more information, please visit the [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts), where you can find the training scripts.
 
55
 
56
  ![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg)
57
 
58
  The model was evaluated on the test set of the BigEarthNet v2.0 dataset with the following results:
59
 
60
+ | Metric | Macro | Micro |
61
  |:------------------|------------------:|------------------:|
62
  | Average Precision | 0.602211 | 0.789338 |
63
  | F1 Score | 0.548913 | 0.696168 |
64
+ | Precision | 0.602211 | 0.789338 |
65
 
66
  # Example
67
+ | A Sentinel-1 image (VV, VH and VV/VH bands are used for visualization) |
68
  |:---------------------------------------------------:|
69
  | ![[BigEarthNet](http://bigearth.net/)](example.png) |
70
 
71
+ | Class labels | Predicted scores |
72
  |:--------------------------------------------------------------------------|--------------------------------------------------------------------------:|
73
  | <p> Agro-forestry areas <br> Arable land <br> Beaches, dunes, sands <br> ... <br> Urban fabric </p> | <p> 0.000005 <br> 0.000090 <br> 0.000094 <br> ... <br> 0.000058 </p> |
74
 
75
 
76
+ To use the model, download the codes that define the model architecture from the
77
  [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model using the
78
+ code below. Note that you have to install [`configilm`](https://pypi.org/project/configilm/) to use the provided code.
79
 
80
  ```python
81
  from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
 
89
  from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
90
 
91
  model = BigEarthNetv2_0_ImageClassifier.from_pretrained(
92
+ "BIFOLD-BigEarthNetv2-0/convnextv2_base-s1-v0.1.1")
93
  ```
94
 
95
  If you use this model in your research or the provided code, please cite the following papers: