Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -29,7 +29,7 @@ widget:
|
|
29 |
:---:|:---:|:---:|:---:|:---:
|
30 |
<a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/> | <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo">
|
31 |
|
32 |
-
# Convnextv2_base
|
33 |
|
34 |
<!-- Optional images -->
|
35 |
<!--
|
@@ -40,46 +40,42 @@ widget:
|
|
40 |
|
41 |
This model was trained on the BigEarthNet v2.0 (also known as reBEN) dataset using the Sentinel-1 bands.
|
42 |
It was trained using the following parameters:
|
43 |
-
- Number of epochs: up to 100
|
44 |
-
|
45 |
-
- after 5 epochs of no improvement
|
46 |
-
- based on validation average precision (macro)
|
47 |
-
- the weights published in this model card were obtained after 18 training epochs
|
48 |
- Batch size: 512
|
49 |
- Learning rate: 0.001
|
50 |
- Dropout rate: 0.15
|
51 |
- Drop Path rate: 0.15
|
52 |
-
- Learning rate scheduler: LinearWarmupCosineAnnealing for 1000
|
53 |
- Optimizer: AdamW
|
54 |
- Seed: 42
|
55 |
|
56 |
-
The
|
57 |
-
[official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts).
|
58 |
-
See details in this repository for more information on how to train the model given the parameters above.
|
59 |
|
60 |
![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg)
|
61 |
|
62 |
The model was evaluated on the test set of the BigEarthNet v2.0 dataset with the following results:
|
63 |
|
64 |
-
| Metric |
|
65 |
|:------------------|------------------:|------------------:|
|
66 |
| Average Precision | 0.602211 | 0.789338 |
|
67 |
| F1 Score | 0.548913 | 0.696168 |
|
68 |
-
| Precision | 0.
|
69 |
|
70 |
# Example
|
71 |
-
|
|
72 |
|:---------------------------------------------------:|
|
73 |
| ![[BigEarthNet](http://bigearth.net/)](example.png) |
|
74 |
|
75 |
-
|
|
76 |
|:--------------------------------------------------------------------------|--------------------------------------------------------------------------:|
|
77 |
| <p> Agro-forestry areas <br> Arable land <br> Beaches, dunes, sands <br> ... <br> Urban fabric </p> | <p> 0.000005 <br> 0.000090 <br> 0.000094 <br> ... <br> 0.000058 </p> |
|
78 |
|
79 |
|
80 |
-
To use the model, download the codes that
|
81 |
[official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model using the
|
82 |
-
code below. Note
|
83 |
|
84 |
```python
|
85 |
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
|
@@ -93,7 +89,7 @@ e.g.
|
|
93 |
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
|
94 |
|
95 |
model = BigEarthNetv2_0_ImageClassifier.from_pretrained(
|
96 |
-
"BIFOLD-BigEarthNetv2-0/
|
97 |
```
|
98 |
|
99 |
If you use this model in your research or the provided code, please cite the following papers:
|
|
|
29 |
:---:|:---:|:---:|:---:|:---:
|
30 |
<a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/> | <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo">
|
31 |
|
32 |
+
# Convnextv2_base pretrained on BigEarthNet v2.0 using Sentinel-1 bands
|
33 |
|
34 |
<!-- Optional images -->
|
35 |
<!--
|
|
|
40 |
|
41 |
This model was trained on the BigEarthNet v2.0 (also known as reBEN) dataset using the Sentinel-1 bands.
|
42 |
It was trained using the following parameters:
|
43 |
+
- Number of epochs: up to 100 (with early stopping after 5 epochs of no improvement based on validation average
|
44 |
+
precision macro)
|
|
|
|
|
|
|
45 |
- Batch size: 512
|
46 |
- Learning rate: 0.001
|
47 |
- Dropout rate: 0.15
|
48 |
- Drop Path rate: 0.15
|
49 |
+
- Learning rate scheduler: LinearWarmupCosineAnnealing for 1000 warmup steps
|
50 |
- Optimizer: AdamW
|
51 |
- Seed: 42
|
52 |
|
53 |
+
The weights published in this model card were obtained after 18 training epochs.
|
54 |
+
For more information, please visit the [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts), where you can find the training scripts.
|
|
|
55 |
|
56 |
![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg)
|
57 |
|
58 |
The model was evaluated on the test set of the BigEarthNet v2.0 dataset with the following results:
|
59 |
|
60 |
+
| Metric | Macro | Micro |
|
61 |
|:------------------|------------------:|------------------:|
|
62 |
| Average Precision | 0.602211 | 0.789338 |
|
63 |
| F1 Score | 0.548913 | 0.696168 |
|
64 |
+
| Precision | 0.602211 | 0.789338 |
|
65 |
|
66 |
# Example
|
67 |
+
| A Sentinel-1 image (VV, VH and VV/VH bands are used for visualization) |
|
68 |
|:---------------------------------------------------:|
|
69 |
| ![[BigEarthNet](http://bigearth.net/)](example.png) |
|
70 |
|
71 |
+
| Class labels | Predicted scores |
|
72 |
|:--------------------------------------------------------------------------|--------------------------------------------------------------------------:|
|
73 |
| <p> Agro-forestry areas <br> Arable land <br> Beaches, dunes, sands <br> ... <br> Urban fabric </p> | <p> 0.000005 <br> 0.000090 <br> 0.000094 <br> ... <br> 0.000058 </p> |
|
74 |
|
75 |
|
76 |
+
To use the model, download the codes that define the model architecture from the
|
77 |
[official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model using the
|
78 |
+
code below. Note that you have to install [`configilm`](https://pypi.org/project/configilm/) to use the provided code.
|
79 |
|
80 |
```python
|
81 |
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
|
|
|
89 |
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
|
90 |
|
91 |
model = BigEarthNetv2_0_ImageClassifier.from_pretrained(
|
92 |
+
"BIFOLD-BigEarthNetv2-0/convnextv2_base-s1-v0.1.1")
|
93 |
```
|
94 |
|
95 |
If you use this model in your research or the provided code, please cite the following papers:
|