File size: 7,653 Bytes
8221db8 089712e 8221db8 089712e 8221db8 089712e c2db29f 089712e 7e3e3fe 089712e c2db29f 089712e c2db29f 089712e 2a1d377 6e4a694 089712e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
thumbnail: "https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png"
tags:
- mixer_b16_224
- BigEarthNet v2.0
- Remote Sensing
- Classification
- image-classification
- Multispectral
library_name: configilm
license: mit
widget:
- src: example.png
example_title: Example
output:
- label: Agro-forestry areas
score: 0.000028
- label: Arable land
score: 0.000100
- label: Beaches, dunes, sands
score: 0.001113
- label: Broad-leaved forest
score: 0.000188
- label: Coastal wetlands
score: 0.000413
---
[TU Berlin](https://www.tu.berlin/) | [RSiM](https://rsim.berlin/) | [DIMA](https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/) | [BigEarth](http://www.bigearth.eu/) | [BIFOLD](https://bifold.berlin/)
:---:|:---:|:---:|:---:|:---:
<a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/> | <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo">
# Mixer_b16_224 pretrained on BigEarthNet v2.0 using Sentinel-1 bands
<!-- Optional images -->
<!--
[Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) | [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2)
:---:|:---:
<a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-1"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_2.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-2 Satellite"/> | <a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-2"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_1.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-1 Satellite"/>
-->
> **_NOTE:_** This version of the model has been trained with a different band order that is not compatible with the newer versions and does not match the order proposed in the technical documentation of Sentinel-2.
>
> The following bands (in the specified order) were used to train the models with version 0.1.1:
> - For models using Sentinel-1 only: Sentinel-1 bands `["VH", "VV"]`
> - For models using Sentinel-2 only: Sentinel-2 10m bands and 20m bands `["B02", "B03", "B04", "B08", "B05", "B06", "B07", "B11", "B12", "B8A"]`
> - For models using Sentinel-1 and Sentinel-2: Sentinel-2 10m bands and 20m bands and Sentinel-1 bands = `["B02", "B03", "B04", "B08", "B05", "B06", "B07", "B11", "B12", "B8A", "VH", "VV"]`
>
> Newer models are compatible with the order in the technical documentation of Sentinel-2 and were trained with the following band order:
> - For models using Sentinel-1 only: Sentinel-1 bands `["VV", "VH"]`
> - For models using Sentinel-2 only: Sentinel-2 10m bands and 20m bands `["B02", "B03", "B04", "B05", "B06", "B07", "B08", "B8A", "B11", "B12"]`
> - For models using Sentinel-1 and Sentinel-2: Sentinel-1 bands and Sentinel-2 10m bands and 20m bands `["VV", "VH", "B02", "B03", "B04", "B05", "B06", "B07", "B08", "B8A", "B11", "B12"]`
This model was trained on the BigEarthNet v2.0 (also known as reBEN) dataset using
the Sentinel-1 bands.
It was trained using the following parameters:
- Number of epochs: up to 100 (with early stopping after 5 epochs of no improvement based on validation average
precision macro)
- Batch size: 512
- Learning rate: 0.001
- Dropout rate: 0.15
- Drop Path rate: 0.15
- Learning rate scheduler: LinearWarmupCosineAnnealing for 1000 warmup steps
- Optimizer: AdamW
- Seed: 0
The weights published in this model card were obtained after 15 training epochs.
For more information, please visit the [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts), where you can find the training scripts.
![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg)
The model was evaluated on the test set of the BigEarthNet v2.0 dataset with the following results:
| Metric | Macro | Micro |
|:------------------|------------------:|------------------:|
| Average Precision | 0.560443 | 0.740646 |
| F1 Score | 0.507159 | 0.648535 |
| Precision | 0.560443 | 0.740646 |
# Example
| A Sentinel-1 image (VV, VH and VV/VH bands are used for visualization) |
|:---------------------------------------------------:|
| ![[BigEarthNet](http://bigearth.net/)](example.png) |
| Class labels | Predicted scores |
|:--------------------------------------------------------------------------|--------------------------------------------------------------------------:|
| <p> Agro-forestry areas <br> Arable land <br> Beaches, dunes, sands <br> ... <br> Urban fabric </p> | <p> 0.000028 <br> 0.000100 <br> 0.001113 <br> ... <br> 0.000067 </p> |
To use the model, download the codes that define the model architecture from the
[official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model using the
code below. Note that you have to install [`configilm`](https://pypi.org/project/configilm/) to use the provided code.
```python
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
model = BigEarthNetv2_0_ImageClassifier.from_pretrained("path_to/huggingface_model_folder")
```
e.g.
```python
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
model = BigEarthNetv2_0_ImageClassifier.from_pretrained(
"BIFOLD-BigEarthNetv2-0/mixer_b16_224-s1-v0.1.1")
```
If you use this model in your research or the provided code, please cite the following papers:
```bibtex
@article{clasen2024refinedbigearthnet,
title={reBEN: Refined BigEarthNet Dataset for Remote Sensing Image Analysis},
author={Clasen, Kai Norman and Hackel, Leonard and Burgert, Tom and Sumbul, Gencer and Demir, Beg{\"u}m and Markl, Volker},
year={2024},
eprint={2407.03653},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.03653},
}
```
```bibtex
@article{hackel2024configilm,
title={ConfigILM: A general purpose configurable library for combining image and language models for visual question answering},
author={Hackel, Leonard and Clasen, Kai Norman and Demir, Beg{\"u}m},
journal={SoftwareX},
volume={26},
pages={101731},
year={2024},
publisher={Elsevier}
}
```
|