File size: 7,648 Bytes
4c9dbb2
1e84b9d
4c9dbb2
1e84b9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c9dbb2
 
1e84b9d
 
 
 
3840a8b
1e84b9d
 
 
 
 
 
 
 
559db27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e84b9d
3840a8b
 
1e84b9d
 
 
 
3840a8b
1e84b9d
 
 
3840a8b
 
1e84b9d
 
 
 
 
3840a8b
1e84b9d
 
 
3840a8b
1e84b9d
 
3840a8b
1e84b9d
 
 
3840a8b
1e84b9d
 
 
 
3840a8b
1e84b9d
3840a8b
1e84b9d
 
 
 
 
 
 
 
 
 
 
 
 
3840a8b
1e84b9d
 
 
 
10db24e
0cfc841
 
 
 
 
 
 
 
1e84b9d
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
thumbnail: "https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png"
tags:
    - mobilevit_s
    - BigEarthNet v2.0
    - Remote Sensing
    - Classification
    - image-classification
    - Multispectral
library_name: configilm
license: mit
widget:
  - src: example.png
    example_title: Example
    output:
      - label: Agro-forestry areas
        score: 0.000000
      - label: Arable land
        score: 0.000000
      - label: Beaches, dunes, sands
        score: 0.000000
      - label: Broad-leaved forest
        score: 0.000097
      - label: Coastal wetlands
        score: 0.000000
---

[TU Berlin](https://www.tu.berlin/) | [RSiM](https://rsim.berlin/) | [DIMA](https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/) | [BigEarth](http://www.bigearth.eu/) | [BIFOLD](https://bifold.berlin/)
:---:|:---:|:---:|:---:|:---:
<a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/>  |  <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo">

# Mobilevit_s pretrained on BigEarthNet v2.0 using Sentinel-1 bands

<!-- Optional images -->
<!--
[Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) | [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2)
:---:|:---:
<a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-1"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_2.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-2 Satellite"/> | <a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-2"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_1.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-1 Satellite"/>
-->


> **_NOTE:_**  This version of the model has been trained with a different band order that is not compatible with the newer versions and does not match the order proposed in the technical documentation of Sentinel-2.
> 
> The following bands (in the specified order) were used to train the models with version 0.1.1:
> - For models using Sentinel-1 only: Sentinel-1 bands `["VH", "VV"]`  
> - For models using Sentinel-2 only: Sentinel-2 10m bands and 20m bands `["B02", "B03", "B04", "B08", "B05", "B06", "B07", "B11", "B12", "B8A"]`  
> - For models using Sentinel-1 and Sentinel-2: Sentinel-2 10m bands and 20m bands and Sentinel-1 bands = `["B02", "B03", "B04", "B08", "B05", "B06", "B07", "B11", "B12", "B8A", "VH", "VV"]`
>
> Newer models are compatible with the order in the technical documentation of Sentinel-2 and were trained with the following band order:
> - For models using Sentinel-1 only: Sentinel-1 bands `["VV", "VH"]`
> - For models using Sentinel-2 only: Sentinel-2 10m bands and 20m bands `["B02", "B03", "B04", "B05", "B06", "B07", "B08", "B8A", "B11", "B12"]`
> - For models using Sentinel-1 and Sentinel-2: Sentinel-1 bands and Sentinel-2 10m bands and 20m bands `["VV", "VH", "B02", "B03", "B04", "B05", "B06", "B07", "B08", "B8A", "B11", "B12"]`

This model was trained on the BigEarthNet v2.0 (also known as reBEN) dataset using
 the Sentinel-1 bands. 
It was trained using the following parameters:
- Number of epochs: up to 100 (with early stopping after 5 epochs of no improvement based on validation average 
precision macro)
- Batch size: 512
- Learning rate: 0.001
- Dropout rate: 0.15
- Drop Path rate: 0.15
- Learning rate scheduler: LinearWarmupCosineAnnealing for 1000  warmup steps
- Optimizer: AdamW
- Seed: 42

The weights published in this model card were obtained after 29 training epochs.
For more information, please visit the [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts), where you can find the training scripts.

![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg)

The model was evaluated on the test set of the BigEarthNet v2.0 dataset with the following results:

| Metric            |       Macro |       Micro |
|:------------------|------------------:|------------------:|
| Average Precision |        0.626912 |        0.809786 |
| F1 Score          |        0.547540 |        0.706779 |
| Precision         | 0.626912 | 0.809786 |

# Example
|             A Sentinel-1 image (VV, VH and VV/VH bands are used for visualization)              |
|:---------------------------------------------------:|
| ![[BigEarthNet](http://bigearth.net/)](example.png) |

| Class labels                                                              |                                                          Predicted scores |
|:--------------------------------------------------------------------------|--------------------------------------------------------------------------:|
| <p> Agro-forestry areas <br> Arable land <br> Beaches, dunes, sands <br> ... <br> Urban fabric </p> | <p> 0.000000 <br> 0.000000 <br> 0.000000 <br> ... <br> 0.000000 </p> |


To use the model, download the codes that define the model architecture from the
[official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model using the
code below. Note that you have to install [`configilm`](https://pypi.org/project/configilm/) to use the provided code.

```python
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier

model = BigEarthNetv2_0_ImageClassifier.from_pretrained("path_to/huggingface_model_folder")
```

e.g.

```python
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier

model = BigEarthNetv2_0_ImageClassifier.from_pretrained(
  "BIFOLD-BigEarthNetv2-0/mobilevit_s-s1-v0.1.1")
```

If you use this model in your research or the provided code, please cite the following papers:
```bibtex
@article{clasen2024refinedbigearthnet,
  title={reBEN: Refined BigEarthNet Dataset for Remote Sensing Image Analysis}, 
  author={Clasen, Kai Norman and Hackel, Leonard and Burgert, Tom and Sumbul, Gencer and Demir, Beg{\"u}m and Markl, Volker},
  year={2024},
  eprint={2407.03653},
  archivePrefix={arXiv},
  primaryClass={cs.CV},
  url={https://arxiv.org/abs/2407.03653}, 
}
```
```bibtex
@article{hackel2024configilm,
  title={ConfigILM: A general purpose configurable library for combining image and language models for visual question answering},
  author={Hackel, Leonard and Clasen, Kai Norman and Demir, Beg{\"u}m},
  journal={SoftwareX},
  volume={26},
  pages={101731},
  year={2024},
  publisher={Elsevier}
}
```