Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,115 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
This is a stable version of BSJCode, a model capable of fixing as well as optimizing java code.
|
5 |
+
|
6 |
+
------------------
|
7 |
+
## How to use it:
|
8 |
+
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
10 |
+
import torch
|
11 |
+
|
12 |
+
# Load the model and tokenizer
|
13 |
+
bnb_config = BitsAndBytesConfig(
|
14 |
+
load_in_4bit=True,
|
15 |
+
bnb_4bit_quant_type="nf4",
|
16 |
+
bnb_4bit_compute_dtype=torch.float16,
|
17 |
+
bnb_4bit_use_double_quant=True,
|
18 |
+
llm_int8_enable_fp32_cpu_offload=True
|
19 |
+
)
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
"BSAtlas/BSJCode-1-Stable",
|
22 |
+
quantization_config=bnb_config,
|
23 |
+
device_map="auto"
|
24 |
+
).to(device="cuda")
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("BSAtlas/BSJCode-1-Stable")
|
26 |
+
|
27 |
+
|
28 |
+
def detect_and_fix_bugs(code_snippet):
|
29 |
+
# Prepare the prompt
|
30 |
+
prompt = f"""You are an expert Java code optimizer and bug fixer.
|
31 |
+
Analyze the following code, identify any bugs or inefficiencies,
|
32 |
+
and provide an optimized and corrected version:
|
33 |
+
|
34 |
+
```java
|
35 |
+
{code_snippet}
|
36 |
+
```
|
37 |
+
|
38 |
+
Optimized and Fixed Code:"""
|
39 |
+
|
40 |
+
# Tokenize the input
|
41 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
42 |
+
|
43 |
+
# Generate code
|
44 |
+
with torch.no_grad():
|
45 |
+
outputs = model.generate(
|
46 |
+
input_ids=inputs['input_ids'],
|
47 |
+
attention_mask=inputs['attention_mask'],
|
48 |
+
max_length=1024, # Adjust based on your model's training
|
49 |
+
num_return_sequences=1,
|
50 |
+
do_sample=True,
|
51 |
+
temperature=0.7,
|
52 |
+
top_k=50,
|
53 |
+
top_p=0.95,
|
54 |
+
repetition_penalty=1.2
|
55 |
+
)
|
56 |
+
|
57 |
+
# Decode the output
|
58 |
+
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
59 |
+
|
60 |
+
# Extract the code portion after the prompt
|
61 |
+
code_start = generated_code.find("Optimized and Fixed Code:")
|
62 |
+
if code_start != -1:
|
63 |
+
fixed_code = generated_code[code_start + len("Optimized and Fixed Code:"):].strip()
|
64 |
+
else:
|
65 |
+
fixed_code = generated_code
|
66 |
+
|
67 |
+
return fixed_code
|
68 |
+
|
69 |
+
|
70 |
+
sample_code = """
|
71 |
+
public class ThreadSafetyExample {
|
72 |
+
private int counter = 0;
|
73 |
+
|
74 |
+
public void increment() {
|
75 |
+
// Not thread-safe method
|
76 |
+
counter++;
|
77 |
+
}
|
78 |
+
|
79 |
+
public int getCounter() {
|
80 |
+
return counter;
|
81 |
+
}
|
82 |
+
|
83 |
+
public static void main(String[] args) {
|
84 |
+
ThreadSafetyExample example = new ThreadSafetyExample();
|
85 |
+
|
86 |
+
Thread t1 = new Thread(() -> {
|
87 |
+
for (int i = 0; i < 1000; i++) {
|
88 |
+
example.increment();
|
89 |
+
}
|
90 |
+
});
|
91 |
+
|
92 |
+
Thread t2 = new Thread(() -> {
|
93 |
+
for (int i = 0; i < 1000; i++) {
|
94 |
+
example.increment();
|
95 |
+
}
|
96 |
+
});
|
97 |
+
|
98 |
+
t1.start();
|
99 |
+
t2.start();
|
100 |
+
|
101 |
+
try {
|
102 |
+
t1.join();
|
103 |
+
t2.join();
|
104 |
+
} catch (InterruptedException e) {
|
105 |
+
e.printStackTrace();
|
106 |
+
}
|
107 |
+
|
108 |
+
System.out.println("Final Counter: " + example.getCounter());
|
109 |
+
}
|
110 |
+
}
|
111 |
+
"""
|
112 |
+
fixed_code = detect_and_fix_bugs(sample_code)
|
113 |
+
print(fixed_code)
|
114 |
+
--------------------------------------------------------------------------
|
115 |
+
|