File size: 3,265 Bytes
2a5c0d3
3c9facd
2a5c0d3
3c9facd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a5c0d3
 
f1c1dc8
2a5c0d3
3c9facd
2a5c0d3
3c9facd
2a5c0d3
3c9facd
 
2a5c0d3
3c9facd
 
 
 
 
2a5c0d3
3c9facd
2a5c0d3
3c9facd
2a5c0d3
70e5ace
2a5c0d3
70e5ace
 
 
 
 
 
170a44f
70e5ace
 
 
 
 
 
 
 
 
 
2a5c0d3
3c9facd
 
2a5c0d3
3c9facd
 
2a5c0d3
3c9facd
 
2a5c0d3
3c9facd
 
 
2a5c0d3
3c9facd
 
 
 
 
2a5c0d3
3c9facd
 
2a5c0d3
3c9facd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
license: apache-2.0
library_name: transformers
base_model: BSC-LT/salamandra-2b
pipeline_tag: text-generation
language:
- bg
- ca
- code
- cs
- cy
- da
- de
- el
- en
- es
- et
- eu
- fi
- fr
- ga
- gl
- hr
- hu
- it
- lt
- lv
- mt
- nl
- nn
- \no
- oc
- pl
- pt
- ro
- ru
- sh
- sk
- sl
- sr
- sv
- uk
---

![image/png](https://cdn-uploads.huggingface.co/production/uploads/633b489acbdbadd99c0b75ef/0xsJ81WLVpN_PJfm6h5n_.png)

# Salamandra-2b-gptq Model Card

This model is the gptq-quantized version of [Salamandra-2b](https://huggingface.co/BSC-LT/salamandra-2b) for speculative decoding.

The model weights are quantized from FP16 to W4A16 (4-bit weights and FP16 activations) using the [GPTQ](https://arxiv.org/abs/2210.17323) algorithm. 
Inferencing with this model can be done using [VLLM](https://docs.vllm.ai/en/stable/models/engine_args.html). 

Salamandra is a highly multilingual model pre-trained from scratch that comes in three different 
sizes — 2B, 7B and 40B parameters — with their respective base and instruction-tuned variants, 
promoted and financed by the Government of Catalonia through the [Aina Project](https://projecteaina.cat/) 
and the _Ministerio para la Transformación Digital y de la Función Pública_ - Funded by EU – NextGenerationEU 
within the framework of [ILENIA Project](https://proyectoilenia.es/) with reference 2022/TL22/00215337.

This model card corresponds to the gptq-quantized version of Salamandra-2b for speculative decoding.

The entire Salamandra family is released under a permissive [Apache 2.0 license]((https://www.apache.org/licenses/LICENSE-2.0)).

## How to Use

The following example code works under ``Python 3.9.16``, ``vllm==0.6.3.post1``, ``torch==2.4.0`` and ``torchvision==0.19.0``, though it should run on
any current version of the libraries. This is an example of how to create a text completion using the model:

```
from vllm import LLM, SamplingParams

model_name = "BSC-LT/salamandra-2b-base-gptq"
llm = LLM(model=model_name)

outputs = llm.generate("El mercat del barri ",
                       sampling_params=SamplingParams(
                           temperature=0.5,
                           max_tokens=200)
                       )
print(outputs[0].outputs[0].text)

```

### Author
International Business Machines (IBM).

### Copyright
International Business Machines (IBM).

### Contact
For further information, please send an email to <[email protected]>.

### Acknowledgements
We appreciate the collaboration with IBM in this work. 
Specifically, the IBM team created gptq-quantized version of the Salamandra-2b model for speculative decoding released here. 

### Disclaimer
Be aware that the model may contain biases or other unintended distortions. 
When third parties deploy systems or provide services based on this model, or use the model themselves, 
they bear the responsibility for mitigating any associated risks and ensuring compliance with applicable 
regulations, including those governing the use of Artificial Intelligence.

Barcelona Supercomputing Center and International Business Machines shall 
not be held liable for any outcomes resulting from third-party use.

### License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)