|
"""MPT Blocks used for the MPT Model.""" |
|
import logging |
|
from copy import deepcopy |
|
from functools import partial |
|
from typing import Any, Callable, Optional, Union |
|
import torch |
|
import torch.nn as nn |
|
from .fc import FC_CLASS_REGISTRY |
|
try: |
|
import transformer_engine.pytorch as te |
|
except: |
|
te = None |
|
log = logging.getLogger(__name__) |
|
_FFN_ACT_FN_DEFAULT = {'name': 'gelu', 'approximate': 'none'} |
|
|
|
def resolve_ffn_act_fn(config: Optional[dict]=None) -> Callable[[torch.Tensor], torch.Tensor]: |
|
"""Resolve the activation function for the feed-forward network. |
|
|
|
Args: |
|
config (Optional[dict]): The configuration dictionary for the activation function. |
|
The dict config must specify the 'name' of a torch.nn.functional activation |
|
function. All of other key values pairs are bound to the function as a partial. |
|
|
|
Returns: |
|
Callable[[torch.Tensor], torch.Tensor]: The activation function. |
|
""" |
|
if config is None: |
|
config = _FFN_ACT_FN_DEFAULT |
|
config = deepcopy(config) |
|
name = config.pop('name') |
|
if not hasattr(torch.nn.functional, name): |
|
raise ValueError(f'Unrecognised activation function name ({name}).') |
|
act = getattr(torch.nn.functional, name) |
|
return partial(act, **config) |
|
_DEFAULT_ACT_FN = resolve_ffn_act_fn(_FFN_ACT_FN_DEFAULT) |
|
|
|
def resolve_ffn_hidden_size(d_model: int, expansion_ratio: Union[int, float], ffn_hidden_size: Optional[int]=None) -> int: |
|
"""Resolve the hidden size of the feed-forward network. |
|
|
|
Args: |
|
d_model (int): The dimension of the input and output of the feed-forward network. |
|
expansion_ratio (Union[int, float]): The expansion ratio of the feed-forward network. |
|
ffn_hidden_size (Optional[int]): The hidden size of the feed-forward network. |
|
|
|
Returns: |
|
int: The hidden size of the feed-forward network. |
|
""" |
|
if ffn_hidden_size is not None: |
|
log.info(f'`expansion_ratio` (={expansion_ratio}) ignored when `ffn_hidden_size` (={ffn_hidden_size}) is specified.') |
|
else: |
|
ffn_hidden_size = int(d_model * expansion_ratio) |
|
if ffn_hidden_size != d_model * expansion_ratio: |
|
raise ValueError(f'`d_model * expansion_ratio` must be an integer (d_model={d_model!r}; expansion_ratio={expansion_ratio!r}; d_model * expansion_ratio={d_model * expansion_ratio!r}).') |
|
return ffn_hidden_size |
|
|
|
class MPTMLP(nn.Module): |
|
|
|
def __init__(self, d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, act_fn: Callable[[torch.Tensor], torch.Tensor]=_DEFAULT_ACT_FN, device: Optional[str]=None, bias: bool=True): |
|
super().__init__() |
|
ffn_hidden_size = resolve_ffn_hidden_size(d_model, expansion_ratio, ffn_hidden_size) |
|
self.fc_kwargs: dict[str, Any] = {'bias': bias} |
|
if fc_type != 'te': |
|
self.fc_kwargs['device'] = device |
|
self.up_proj = FC_CLASS_REGISTRY[fc_type](d_model, ffn_hidden_size, **self.fc_kwargs) |
|
self.act = act_fn |
|
self.down_proj = FC_CLASS_REGISTRY[fc_type](ffn_hidden_size, d_model, **self.fc_kwargs) |
|
self.down_proj._is_residual = True |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return self.down_proj(self.act(self.up_proj(x))) |
|
|
|
class MPTGLU(MPTMLP): |
|
|
|
def __init__(self, d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, act_fn: Callable[[torch.Tensor], torch.Tensor]=_DEFAULT_ACT_FN, device: Optional[str]=None, bias: bool=True): |
|
super().__init__(d_model=d_model, expansion_ratio=expansion_ratio, fc_type=fc_type, ffn_hidden_size=ffn_hidden_size, act_fn=act_fn, device=device, bias=bias) |
|
self.gate_proj = FC_CLASS_REGISTRY[fc_type](d_model, self.up_proj.out_features, **self.fc_kwargs) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return self.down_proj(self.act(self.gate_proj(x)) * self.up_proj(x)) |
|
FFN_CLASS_REGISTRY = {'mptmlp': MPTMLP, 'mptglu': MPTGLU} |
|
if te is not None: |
|
te.LayerNormMLP._has_norm = True |
|
FFN_CLASS_REGISTRY['te_ln_mlp'] = te.LayerNormMLP |
|
|
|
def build_ffn(d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, ffn_act_fn: Optional[dict]=None, device: Optional[str]=None, bias: bool=True, **kwargs: Any) -> nn.Module: |
|
ffn_type = kwargs.pop('ffn_type') |
|
if ffn_type in ['mptmlp', 'mptglu']: |
|
if len(kwargs) > 0: |
|
raise ValueError(f'MPTMLP (or MPTGLU) got an unexpected keyword argument: {kwargs}') |
|
return FFN_CLASS_REGISTRY[ffn_type](d_model=d_model, expansion_ratio=expansion_ratio, fc_type=fc_type, act_fn=resolve_ffn_act_fn(ffn_act_fn), ffn_hidden_size=ffn_hidden_size, device=device, bias=bias) |
|
elif ffn_type == 'te_ln_mlp': |
|
assert te is not None |
|
ffn_hidden_size = resolve_ffn_hidden_size(d_model, expansion_ratio, ffn_hidden_size) |
|
if ffn_act_fn is not None: |
|
raise ValueError(f'Transformer Engine block does not support custom activation functions.') |
|
return te.LayerNormMLP(hidden_size=d_model, ffn_hidden_size=ffn_hidden_size, bias=bias, **kwargs) |
|
raise ValueError(f'ffn_type={ffn_type!r} not recognized.') |