|
import math |
|
import warnings |
|
from collections.abc import Sequence |
|
from functools import partial |
|
from typing import Any, Callable, Optional, Tuple, Union |
|
import torch |
|
from torch import nn |
|
from .fc import FC_CLASS_REGISTRY |
|
from .norm import NORM_CLASS_REGISTRY |
|
try: |
|
import transformer_engine.pytorch as te |
|
except: |
|
te = None |
|
|
|
def torch_default_param_init_fn_(module: nn.Module, **kwargs: Any) -> None: |
|
del kwargs |
|
if hasattr(module, 'reset_parameters') and isinstance(module.reset_parameters, Callable): |
|
module.reset_parameters() |
|
|
|
def fused_init_helper_(module: nn.Module, init_fn_: Callable) -> None: |
|
_fused = getattr(module, '_fused', None) |
|
if _fused is None: |
|
raise RuntimeError(f'Internal logic error') |
|
assert isinstance(module.weight, torch.Tensor) |
|
(dim, splits) = _fused |
|
splits = (0, *splits, module.weight.size(dim)) |
|
for (s, e) in zip(splits[:-1], splits[1:]): |
|
slice_indices = [slice(None)] * module.weight.ndim |
|
slice_indices[dim] = slice(s, e) |
|
init_fn_(module.weight[slice_indices]) |
|
|
|
def generic_param_init_fn_(module: nn.Module, init_fn_: Callable, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None: |
|
del kwargs |
|
init_div_is_residual = init_div_is_residual |
|
if init_div_is_residual is False: |
|
div_is_residual = 1.0 |
|
elif init_div_is_residual is True: |
|
div_is_residual = math.sqrt(2 * n_layers) |
|
elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int): |
|
div_is_residual = init_div_is_residual |
|
elif init_div_is_residual.isnumeric(): |
|
div_is_residual = float(init_div_is_residual) |
|
else: |
|
div_is_residual = 1.0 |
|
raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}') |
|
if isinstance(module, tuple(set(FC_CLASS_REGISTRY.values()))): |
|
if hasattr(module, '_fused'): |
|
fused_init_helper_(module, init_fn_) |
|
else: |
|
init_fn_(module.weight) |
|
if module.bias is not None: |
|
assert isinstance(module.bias, torch.Tensor) |
|
torch.nn.init.zeros_(module.bias) |
|
if init_div_is_residual is not False and getattr(module, '_is_residual', False): |
|
with torch.no_grad(): |
|
module.weight.div_(div_is_residual) |
|
elif isinstance(module, nn.Embedding): |
|
if emb_init_std is not None: |
|
std = emb_init_std |
|
if std == 0: |
|
warnings.warn(f'Embedding layer initialized to 0.') |
|
emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std) |
|
elif emb_init_uniform_lim is not None: |
|
lim = emb_init_uniform_lim |
|
if isinstance(lim, Sequence): |
|
if len(lim) > 2: |
|
raise ValueError(f'Uniform init requires a min and a max limit. User input: {lim}.') |
|
if lim[0] == lim[1]: |
|
warnings.warn(f'Embedding layer initialized to {lim[0]}.') |
|
else: |
|
if lim == 0: |
|
warnings.warn(f'Embedding layer initialized to 0.') |
|
lim = [-lim, lim] |
|
(a, b) = lim |
|
emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b) |
|
else: |
|
emb_init_fn_ = init_fn_ |
|
emb_init_fn_(module.weight) |
|
elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))): |
|
if hasattr(module, 'weight') and isinstance(module.weight, torch.Tensor): |
|
torch.nn.init.ones_(module.weight) |
|
if hasattr(module, 'bias') and isinstance(module.bias, torch.Tensor): |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.MultiheadAttention): |
|
if module._qkv_same_embed_dim: |
|
assert module.in_proj_weight is not None |
|
assert module.q_proj_weight is None and module.k_proj_weight is None and (module.v_proj_weight is None) |
|
assert d_model is not None |
|
_d = d_model |
|
splits = (0, _d, 2 * _d, 3 * _d) |
|
for (s, e) in zip(splits[:-1], splits[1:]): |
|
init_fn_(module.in_proj_weight[s:e]) |
|
else: |
|
assert module.q_proj_weight is not None and module.k_proj_weight is not None and (module.v_proj_weight is not None) |
|
assert module.in_proj_weight is None |
|
init_fn_(module.q_proj_weight) |
|
init_fn_(module.k_proj_weight) |
|
init_fn_(module.v_proj_weight) |
|
if module.in_proj_bias is not None: |
|
torch.nn.init.zeros_(module.in_proj_bias) |
|
if module.bias_k is not None: |
|
torch.nn.init.zeros_(module.bias_k) |
|
if module.bias_v is not None: |
|
torch.nn.init.zeros_(module.bias_v) |
|
init_fn_(module.out_proj.weight) |
|
if init_div_is_residual is not False and getattr(module.out_proj, '_is_residual', False): |
|
with torch.no_grad(): |
|
module.out_proj.weight.div_(div_is_residual) |
|
if module.out_proj.bias is not None: |
|
torch.nn.init.zeros_(module.out_proj.bias) |
|
elif te is not None and isinstance(module, te.LayerNormMLP): |
|
if isinstance(module.layer_norm_weight, torch.Tensor): |
|
torch.nn.init.ones_(module.layer_norm_weight) |
|
if isinstance(module.layer_norm_bias, torch.Tensor): |
|
torch.nn.init.zeros_(module.layer_norm_bias) |
|
init_fn_(module.fc1_weight) |
|
if module.fc1_bias is not None: |
|
assert isinstance(module.fc1_bias, torch.Tensor) |
|
torch.nn.init.zeros_(module.fc1_bias) |
|
init_fn_(module.fc2_weight) |
|
if module.fc2_bias is not None: |
|
assert isinstance(module.fc2_bias, torch.Tensor) |
|
torch.nn.init.zeros_(module.fc2_bias) |
|
with torch.no_grad(): |
|
module.fc2_weight.div_(div_is_residual) |
|
else: |
|
for _ in module.parameters(recurse=False): |
|
raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by param_init_fn.') |
|
|
|
def _normal_init_(std: float, mean: float=0.0) -> Callable: |
|
return partial(torch.nn.init.normal_, mean=mean, std=std) |
|
|
|
def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None: |
|
del kwargs |
|
init_fn_ = _normal_init_(std=std) |
|
generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim) |
|
|
|
def baseline_param_init_fn_(module: nn.Module, init_std: Optional[float], n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None: |
|
del kwargs |
|
if init_std is None: |
|
raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.") |
|
_normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim) |
|
|
|
def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None: |
|
del kwargs |
|
std = math.sqrt(2 / (5 * d_model)) |
|
_normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim) |
|
|
|
def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None: |
|
"""From section 2.3.1 of GPT-NeoX-20B: |
|
|
|
An Open-Source AutoregressiveLanguage Model — Black et. al. (2022) |
|
see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151 |
|
and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py |
|
""" |
|
del kwargs |
|
residual_div = n_layers / math.sqrt(10) |
|
small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim) |
|
|
|
def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', **kwargs: Any) -> None: |
|
del kwargs |
|
kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity) |
|
generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim) |
|
|
|
def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', **kwargs: Any) -> None: |
|
del kwargs |
|
kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity) |
|
generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim) |
|
|
|
def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, **kwargs: Any) -> None: |
|
del kwargs |
|
xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain) |
|
generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim) |
|
|
|
def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, **kwargs: Any) -> None: |
|
del kwargs |
|
xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain) |
|
generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim) |
|
MODEL_INIT_REGISTRY = {'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_} |