|
"""Converts Huggingface Causal LM to Prefix LM. |
|
|
|
Conversion does lightweight surgery on a HuggingFace |
|
Causal LM to convert it to a Prefix LM. |
|
|
|
Prefix LMs accepts a `bidirectional_mask` input in `forward` |
|
and treat the input prompt as the prefix in `generate`. |
|
""" |
|
from types import MethodType |
|
from typing import Any, List, MutableMapping, Optional, Tuple, Union |
|
import torch |
|
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel |
|
from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM |
|
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM |
|
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM |
|
_SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM) |
|
CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM] |
|
|
|
def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES: |
|
"""Converts a GPT-style Causal LM to a Prefix LM. |
|
|
|
Supported HuggingFace model classes: |
|
- `GPT2LMHeadModel` |
|
- `GPTNeoForCausalLM` |
|
- `GPTNeoXForCausalLM` |
|
- `GPTJForCausalLM` |
|
|
|
See `convert_hf_causal_lm_to_prefix_lm` for more details. |
|
""" |
|
if hasattr(model, '_prefix_lm_converted'): |
|
return model |
|
assert isinstance(model, _SUPPORTED_GPT_MODELS) |
|
assert model.config.add_cross_attention == False, 'Only supports GPT-style decoder-only models' |
|
|
|
def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]: |
|
"""Helper that gets a list of the model's attention modules. |
|
|
|
Each module has a `bias` buffer used for causal masking. The Prefix LM |
|
conversion adds logic to dynamically manipulate these biases to support |
|
Prefix LM attention masking. |
|
""" |
|
attn_modules = [] |
|
if isinstance(model, GPTNeoXForCausalLM): |
|
blocks = model.gpt_neox.layers |
|
else: |
|
blocks = model.transformer.h |
|
for block in blocks: |
|
if isinstance(model, GPTNeoForCausalLM): |
|
if block.attn.attention_type != 'global': |
|
continue |
|
attn_module = block.attn.attention |
|
elif isinstance(model, GPTNeoXForCausalLM): |
|
attn_module = block.attention |
|
else: |
|
attn_module = block.attn |
|
attn_modules.append(attn_module) |
|
return attn_modules |
|
setattr(model, '_original_forward', getattr(model, 'forward')) |
|
setattr(model, '_original_generate', getattr(model, 'generate')) |
|
|
|
def forward(self: CAUSAL_GPT_TYPES, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]]=None, attention_mask: Optional[torch.FloatTensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, token_type_ids: Optional[torch.LongTensor]=None, position_ids: Optional[torch.LongTensor]=None, head_mask: Optional[torch.FloatTensor]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None): |
|
"""Wraps original forward to enable PrefixLM attention.""" |
|
|
|
def call_og_forward(): |
|
if isinstance(self, GPTNeoXForCausalLM): |
|
return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) |
|
else: |
|
return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) |
|
if bidirectional_mask is None: |
|
return call_og_forward() |
|
assert isinstance(bidirectional_mask, torch.Tensor) |
|
attn_modules = _get_attn_modules(model) |
|
(b, s) = bidirectional_mask.shape |
|
max_length = attn_modules[0].bias.shape[-1] |
|
if s > max_length: |
|
raise ValueError(f'bidirectional_mask sequence length (={s}) exceeds the ' + f'max length allowed by the model ({max_length}).') |
|
assert s <= max_length |
|
if s < max_length: |
|
pad = torch.zeros((int(b), int(max_length - s)), dtype=bidirectional_mask.dtype, device=bidirectional_mask.device) |
|
bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1) |
|
bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1) |
|
for attn_module in attn_modules: |
|
assert isinstance(attn_module.bias, torch.Tensor) |
|
attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional) |
|
output = call_og_forward() |
|
for attn_module in attn_modules: |
|
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None] |
|
return output |
|
|
|
def generate(self: CAUSAL_GPT_TYPES, *args: Any, **kwargs: Any): |
|
"""Wraps original generate to enable PrefixLM attention.""" |
|
attn_modules = _get_attn_modules(model) |
|
for attn_module in attn_modules: |
|
attn_module.bias.data[:] = 1 |
|
output = self._original_generate(*args, **kwargs) |
|
for attn_module in attn_modules: |
|
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None] |
|
return output |
|
setattr(model, 'forward', MethodType(forward, model)) |
|
setattr(model, 'generate', MethodType(generate, model)) |
|
setattr(model, '_prefix_lm_converted', True) |
|
return model |
|
_SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS |
|
CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM] |
|
|
|
def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES: |
|
"""Converts a HuggingFace Causal LM to a Prefix LM. |
|
|
|
Supported HuggingFace model classes: |
|
- `GPT2LMHeadModel` |
|
- `GPTNeoForCausalLM` |
|
- `GPTNeoXForCausalLM` |
|
- `GPTJForCausalLM` |
|
|
|
Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the |
|
`generate` method and/or select underlying methods depending on the model class. |
|
|
|
These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask". |
|
|
|
Notes on training: |
|
To actually train the converted model as a Prefix LM, training batches will need to indicate |
|
the prefix/target structure by including `bidirectional_mask` as part of the batch inputs. |
|
|
|
**This is not a standard input and requires custom layers either within or after your dataloader.** |
|
|
|
In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels` |
|
such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`. |
|
That is, the prefix portion of the sequence should not generate any loss. Loss should only be |
|
generated by the target portion of the sequence. |
|
|
|
Notes on `GPTNeoForCausalLM`: |
|
To simplify the implementation, "global" and "local" attention layers are handled differently. |
|
For "global" layers, we handle conversion as described above. For "local" layers, which use a |
|
causal attention mask within a restricted local window, we do not alter the masking. |
|
|
|
Notes on `forward` method conversion: |
|
After conversion, the `forward` method will handle a new input, `bidirectional_mask`, |
|
which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions |
|
belonging to the prefix (prefix tokens can attend to one another bidirectionally), and |
|
0 indicates token positions belonging to the target. |
|
|
|
The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing |
|
causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset |
|
the causal masks before returning the result. |
|
|
|
Notes on `generate` method conversion: |
|
After conversion, the `generate` method will have the same signature but will internally |
|
convert all causal masks to be purely bidirectional, call the original `generate` method, and |
|
(where appropriate) reset the causal masks before returning the result. |
|
|
|
This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token |
|
"prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates |
|
each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one |
|
another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and |
|
previously-generated tokens (also as expected in a Prefix LM). |
|
|
|
To preserve the API, the original methods are renamed to `_original_forward` and |
|
`_original_generate`, and replaced with new `forward` and `generate` methods that wrap |
|
them, respectively. Although implementation details vary by model class. |
|
""" |
|
if isinstance(model, _SUPPORTED_GPT_MODELS): |
|
return _convert_gpt_causal_lm_to_prefix_lm(model) |
|
else: |
|
raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}') |
|
|
|
def add_bidirectional_mask_if_missing(batch: MutableMapping): |
|
"""Attempts to add bidirectional_mask to batch if missing. |
|
|
|
Raises: |
|
KeyError if bidirectional_mask is missing and can't be inferred |
|
""" |
|
if 'bidirectional_mask' not in batch: |
|
if batch.get('mode', None) == 'icl_task': |
|
batch['bidirectional_mask'] = batch['attention_mask'].clone() |
|
for (i, continuation_indices) in enumerate(batch['continuation_indices']): |
|
batch['bidirectional_mask'][i, continuation_indices] = 0 |
|
elif 'labels' in batch and 'attention_mask' in batch: |
|
batch['bidirectional_mask'] = torch.logical_and(torch.eq(batch['attention_mask'], 1), torch.eq(batch['labels'], -100)).type_as(batch['attention_mask']) |
|
else: |
|
raise KeyError('No bidirectional_mask in batch and not sure how to construct one.') |