|
from typing import Dict, List, Optional, Type, Union |
|
import torch |
|
|
|
def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor: |
|
if torch.is_autocast_enabled(): |
|
if tensor.device.type == 'cuda': |
|
dtype = torch.get_autocast_gpu_dtype() |
|
elif tensor.device.type == 'cpu': |
|
dtype = torch.get_autocast_cpu_dtype() |
|
else: |
|
raise NotImplementedError() |
|
return tensor.to(dtype=dtype) |
|
return tensor |
|
|
|
class LPLayerNorm(torch.nn.LayerNorm): |
|
|
|
def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, elementwise_affine: bool=True, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): |
|
super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
module_device = x.device |
|
downcast_x = _cast_if_autocast_enabled(x) |
|
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight |
|
downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias |
|
with torch.autocast(enabled=False, device_type=module_device.type): |
|
return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps) |
|
|
|
def rms_norm(x: torch.Tensor, weight: Optional[torch.Tensor]=None, eps: float=1e-05) -> torch.Tensor: |
|
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps) |
|
if weight is not None: |
|
return output * weight |
|
return output |
|
|
|
class RMSNorm(torch.nn.Module): |
|
|
|
def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None): |
|
super().__init__() |
|
self.eps = eps |
|
if weight: |
|
self.weight = torch.nn.Parameter(torch.ones(normalized_shape, dtype=dtype, device=device)) |
|
else: |
|
self.register_parameter('weight', None) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype) |
|
|
|
class LPRMSNorm(RMSNorm): |
|
|
|
def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None): |
|
super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
downcast_x = _cast_if_autocast_enabled(x) |
|
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight |
|
with torch.autocast(enabled=False, device_type=x.device.type): |
|
return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype) |
|
NORM_CLASS_REGISTRY: Dict[str, Type[torch.nn.Module]] = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm} |