Text Generation
Transformers
Safetensors
Czech
mpt
custom_code
text-generation-inference
Inference Endpoints
csmpt7b / param_init_fns.py
mfajcik's picture
code upload
27ccd05 verified
import math
import warnings
from collections.abc import Sequence
from functools import partial
from typing import Any, Callable, Optional, Tuple, Union
import torch
from torch import nn
from .fc import FC_CLASS_REGISTRY
from .norm import NORM_CLASS_REGISTRY
try:
import transformer_engine.pytorch as te
except:
te = None
def torch_default_param_init_fn_(module: nn.Module, **kwargs: Any) -> None:
del kwargs
if hasattr(module, 'reset_parameters') and isinstance(module.reset_parameters, Callable):
module.reset_parameters()
def fused_init_helper_(module: nn.Module, init_fn_: Callable) -> None:
_fused = getattr(module, '_fused', None)
if _fused is None:
raise RuntimeError(f'Internal logic error')
assert isinstance(module.weight, torch.Tensor)
(dim, splits) = _fused
splits = (0, *splits, module.weight.size(dim))
for (s, e) in zip(splits[:-1], splits[1:]):
slice_indices = [slice(None)] * module.weight.ndim
slice_indices[dim] = slice(s, e)
init_fn_(module.weight[slice_indices])
def generic_param_init_fn_(module: nn.Module, init_fn_: Callable, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
del kwargs
init_div_is_residual = init_div_is_residual
if init_div_is_residual is False:
div_is_residual = 1.0
elif init_div_is_residual is True:
div_is_residual = math.sqrt(2 * n_layers)
elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int):
div_is_residual = init_div_is_residual
elif init_div_is_residual.isnumeric():
div_is_residual = float(init_div_is_residual)
else:
div_is_residual = 1.0
raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}')
if isinstance(module, tuple(set(FC_CLASS_REGISTRY.values()))):
if hasattr(module, '_fused'):
fused_init_helper_(module, init_fn_)
else:
init_fn_(module.weight)
if module.bias is not None:
assert isinstance(module.bias, torch.Tensor)
torch.nn.init.zeros_(module.bias)
if init_div_is_residual is not False and getattr(module, '_is_residual', False):
with torch.no_grad():
module.weight.div_(div_is_residual)
elif isinstance(module, nn.Embedding):
if emb_init_std is not None:
std = emb_init_std
if std == 0:
warnings.warn(f'Embedding layer initialized to 0.')
emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
elif emb_init_uniform_lim is not None:
lim = emb_init_uniform_lim
if isinstance(lim, Sequence):
if len(lim) > 2:
raise ValueError(f'Uniform init requires a min and a max limit. User input: {lim}.')
if lim[0] == lim[1]:
warnings.warn(f'Embedding layer initialized to {lim[0]}.')
else:
if lim == 0:
warnings.warn(f'Embedding layer initialized to 0.')
lim = [-lim, lim]
(a, b) = lim
emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
else:
emb_init_fn_ = init_fn_
emb_init_fn_(module.weight)
elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
if hasattr(module, 'weight') and isinstance(module.weight, torch.Tensor):
torch.nn.init.ones_(module.weight)
if hasattr(module, 'bias') and isinstance(module.bias, torch.Tensor):
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.MultiheadAttention):
if module._qkv_same_embed_dim:
assert module.in_proj_weight is not None
assert module.q_proj_weight is None and module.k_proj_weight is None and (module.v_proj_weight is None)
assert d_model is not None
_d = d_model
splits = (0, _d, 2 * _d, 3 * _d)
for (s, e) in zip(splits[:-1], splits[1:]):
init_fn_(module.in_proj_weight[s:e])
else:
assert module.q_proj_weight is not None and module.k_proj_weight is not None and (module.v_proj_weight is not None)
assert module.in_proj_weight is None
init_fn_(module.q_proj_weight)
init_fn_(module.k_proj_weight)
init_fn_(module.v_proj_weight)
if module.in_proj_bias is not None:
torch.nn.init.zeros_(module.in_proj_bias)
if module.bias_k is not None:
torch.nn.init.zeros_(module.bias_k)
if module.bias_v is not None:
torch.nn.init.zeros_(module.bias_v)
init_fn_(module.out_proj.weight)
if init_div_is_residual is not False and getattr(module.out_proj, '_is_residual', False):
with torch.no_grad():
module.out_proj.weight.div_(div_is_residual)
if module.out_proj.bias is not None:
torch.nn.init.zeros_(module.out_proj.bias)
elif te is not None and isinstance(module, te.LayerNormMLP):
if isinstance(module.layer_norm_weight, torch.Tensor):
torch.nn.init.ones_(module.layer_norm_weight)
if isinstance(module.layer_norm_bias, torch.Tensor):
torch.nn.init.zeros_(module.layer_norm_bias)
init_fn_(module.fc1_weight)
if module.fc1_bias is not None:
assert isinstance(module.fc1_bias, torch.Tensor)
torch.nn.init.zeros_(module.fc1_bias)
init_fn_(module.fc2_weight)
if module.fc2_bias is not None:
assert isinstance(module.fc2_bias, torch.Tensor)
torch.nn.init.zeros_(module.fc2_bias)
with torch.no_grad():
module.fc2_weight.div_(div_is_residual)
else:
for _ in module.parameters(recurse=False):
raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by param_init_fn.')
def _normal_init_(std: float, mean: float=0.0) -> Callable:
return partial(torch.nn.init.normal_, mean=mean, std=std)
def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
del kwargs
init_fn_ = _normal_init_(std=std)
generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
def baseline_param_init_fn_(module: nn.Module, init_std: Optional[float], n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
del kwargs
if init_std is None:
raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.")
_normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
del kwargs
std = math.sqrt(2 / (5 * d_model))
_normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
"""From section 2.3.1 of GPT-NeoX-20B:
An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151
and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py
"""
del kwargs
residual_div = n_layers / math.sqrt(10)
small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', **kwargs: Any) -> None:
del kwargs
kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', **kwargs: Any) -> None:
del kwargs
kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, **kwargs: Any) -> None:
del kwargs
xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, **kwargs: Any) -> None:
del kwargs
xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
MODEL_INIT_REGISTRY = {'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_}