Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,84 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
### Eval
|
5 |
+
Dev eval at CS-HellaSwag
|
6 |
+
| Model | Model Accuracy |
|
7 |
+
|---------------|----------------|
|
8 |
+
| mistral7b | 0.4992 |
|
9 |
+
| csmpt-130k | __0.5004__ |
|
10 |
+
| csmpt-100k | 0.4959 |
|
11 |
+
| csmpt-75k | 0.4895 |
|
12 |
+
| csmpt-50k steps | 0.4755 |
|
13 |
+
| csmpt-26.5k steps | 0.4524 |
|
14 |
+
|
15 |
+
|
16 |
+
However, we ran validation on Hellaswag, and after 100k, the improvements were very noisy if any. The improvement over mistral7b is not significant.
|
17 |
+
|
18 |
+
|
19 |
+
### How to setup environment
|
20 |
+
```bash
|
21 |
+
pip install transformers==4.37.2 torch==2.1.2 einops==0.7.0
|
22 |
+
|
23 |
+
# be sure to install right flash-attn, we use torch compiled with CUDA 12.1, no ABI, python 3.9, Linux x86_64 architecture
|
24 |
+
pip install https://github.com/Dao-AILab/flash-attention/releases/download/v2.5.3/flash_attn-2.5.3+cu122torch2.
|
25 |
+
1cxx11abiFALSE-cp39-cp39-linux_x86_64.whl
|
26 |
+
|
27 |
+
### How to use in transformers
|
28 |
+
```python
|
29 |
+
import torch
|
30 |
+
import transformers
|
31 |
+
from transformers import pipeline
|
32 |
+
|
33 |
+
name = 'BUT-FIT/csmpt7b'
|
34 |
+
|
35 |
+
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
|
36 |
+
config.attn_config['attn_impl'] = 'flash'
|
37 |
+
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
|
38 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
39 |
+
name,
|
40 |
+
config=config,
|
41 |
+
torch_dtype=torch.bfloat16, # Load model weights in bfloat16
|
42 |
+
trust_remote_code=True
|
43 |
+
)
|
44 |
+
|
45 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(name, trust_remote_code=True)
|
46 |
+
|
47 |
+
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
|
48 |
+
|
49 |
+
with torch.autocast('cuda', dtype=torch.bfloat16):
|
50 |
+
print(
|
51 |
+
pipe('Nejznámějším českým spisovatelem ',
|
52 |
+
max_new_tokens=100,
|
53 |
+
top_p=0.95,
|
54 |
+
repetition_penalty=1.0,
|
55 |
+
do_sample=True,
|
56 |
+
use_cache=True))
|
57 |
+
|
58 |
+
```
|
59 |
+
|
60 |
+
|
61 |
+
### Our Release Plan
|
62 |
+
| Stage | Description | Date |
|
63 |
+
|---------------|----------------|----------------|
|
64 |
+
| 1 | 'Best' model + training data | 11.03.2024
|
65 |
+
| 2 | All checkpoints + training code|
|
66 |
+
| 3 | __Benczechmark__ a collection of Czech datasets for few-shot LLM evaluation |
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
- Stage 1: 'Best' model + training data.
|
71 |
+
- Stage 2: All checkpoints + training code
|
72 |
+
- Stage 3: __Benczechmark__ a collection of Czech datasets. **Get in touch if you'd like to know more and contribute!**
|
73 |
+
|
74 |
+
## Getting in Touch
|
75 |
+
For further questions, email to `[email protected]`.
|
76 |
+
|
77 |
+
## Disclaimer
|
78 |
+
This is a probabilistic model, and authors are not responsible for the model outputs. Use at your own risk.
|
79 |
+
|
80 |
+
|
81 |
+
## Acknowledgement
|
82 |
+
This work was supported by NAKI III program of Ministry of Culture Czech Republic, project semANT ---
|
83 |
+
"Sémantický průzkumník textového kulturního dědictví" grant no. `DH23P03OVV060` and
|
84 |
+
by the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:`90254`).
|