Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
-
|
|
|
|
|
|
|
5 |
Dev eval at CS-HellaSwag (automatically translated HellaSwag benchmark)
|
6 |
| Model | Model Accuracy |
|
7 |
|---------------|----------------|
|
@@ -17,15 +20,17 @@ However, we ran validation over the course of training on CS-Hellaswag, and afte
|
|
17 |
The improvement over mistral7b is not significant.
|
18 |
|
19 |
|
20 |
-
|
|
|
21 |
```bash
|
22 |
pip install transformers==4.37.2 torch==2.1.2 einops==0.7.0
|
23 |
|
24 |
# be sure to install right flash-attn, we use torch compiled with CUDA 12.1, no ABI, python 3.9, Linux x86_64 architecture
|
25 |
pip install https://github.com/Dao-AILab/flash-attention/releases/download/v2.5.3/flash_attn-2.5.3+cu122torch2.
|
26 |
1cxx11abiFALSE-cp39-cp39-linux_x86_64.whl
|
|
|
27 |
|
28 |
-
|
29 |
```python
|
30 |
import torch
|
31 |
import transformers
|
@@ -34,7 +39,6 @@ from transformers import pipeline
|
|
34 |
name = 'BUT-FIT/csmpt7b'
|
35 |
|
36 |
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
|
37 |
-
config.attn_config['attn_impl'] = 'flash'
|
38 |
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
|
39 |
model = transformers.AutoModelForCausalLM.from_pretrained(
|
40 |
name,
|
@@ -56,30 +60,26 @@ with torch.autocast('cuda', dtype=torch.bfloat16):
|
|
56 |
do_sample=True,
|
57 |
use_cache=True))
|
58 |
|
59 |
-
```
|
|
|
|
|
60 |
|
61 |
|
62 |
-
|
63 |
| Stage | Description | Date |
|
64 |
|---------------|----------------|----------------|
|
65 |
| 1 | 'Best' model + training data | 11.03.2024
|
66 |
| 2 | All checkpoints + training code|
|
67 |
| 3 | __Benczechmark__ a collection of Czech datasets for few-shot LLM evaluation |
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
- Stage 1: 'Best' model + training data.
|
72 |
-
- Stage 2: All checkpoints + training code
|
73 |
-
- Stage 3: __Benczechmark__ a collection of Czech datasets. **Get in touch if you'd like to know more and contribute!**
|
74 |
-
|
75 |
## Getting in Touch
|
76 |
For further questions, email to `[email protected]`.
|
77 |
|
78 |
-
|
79 |
This is a probabilistic model, and authors are not responsible for the model outputs. Use at your own risk.
|
80 |
|
81 |
|
82 |
-
|
83 |
This work was supported by NAKI III program of Ministry of Culture Czech Republic, project semANT ---
|
84 |
"Sémantický průzkumník textového kulturního dědictví" grant no. `DH23P03OVV060` and
|
85 |
by the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:`90254`).
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
# Intruduction
|
5 |
+
|
6 |
+
|
7 |
+
# Eval
|
8 |
Dev eval at CS-HellaSwag (automatically translated HellaSwag benchmark)
|
9 |
| Model | Model Accuracy |
|
10 |
|---------------|----------------|
|
|
|
20 |
The improvement over mistral7b is not significant.
|
21 |
|
22 |
|
23 |
+
# Usage
|
24 |
+
## How to Setup Environment
|
25 |
```bash
|
26 |
pip install transformers==4.37.2 torch==2.1.2 einops==0.7.0
|
27 |
|
28 |
# be sure to install right flash-attn, we use torch compiled with CUDA 12.1, no ABI, python 3.9, Linux x86_64 architecture
|
29 |
pip install https://github.com/Dao-AILab/flash-attention/releases/download/v2.5.3/flash_attn-2.5.3+cu122torch2.
|
30 |
1cxx11abiFALSE-cp39-cp39-linux_x86_64.whl
|
31 |
+
```
|
32 |
|
33 |
+
## Running the Code
|
34 |
```python
|
35 |
import torch
|
36 |
import transformers
|
|
|
39 |
name = 'BUT-FIT/csmpt7b'
|
40 |
|
41 |
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
|
|
|
42 |
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
|
43 |
model = transformers.AutoModelForCausalLM.from_pretrained(
|
44 |
name,
|
|
|
60 |
do_sample=True,
|
61 |
use_cache=True))
|
62 |
|
63 |
+
```
|
64 |
+
# Training Data
|
65 |
+
We release most of our training data here \[TBD MDocekal.\].
|
66 |
|
67 |
|
68 |
+
# Our Release Plan
|
69 |
| Stage | Description | Date |
|
70 |
|---------------|----------------|----------------|
|
71 |
| 1 | 'Best' model + training data | 11.03.2024
|
72 |
| 2 | All checkpoints + training code|
|
73 |
| 3 | __Benczechmark__ a collection of Czech datasets for few-shot LLM evaluation |
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
## Getting in Touch
|
76 |
For further questions, email to `[email protected]`.
|
77 |
|
78 |
+
# Disclaimer
|
79 |
This is a probabilistic model, and authors are not responsible for the model outputs. Use at your own risk.
|
80 |
|
81 |
|
82 |
+
# Acknowledgement
|
83 |
This work was supported by NAKI III program of Ministry of Culture Czech Republic, project semANT ---
|
84 |
"Sémantický průzkumník textového kulturního dědictví" grant no. `DH23P03OVV060` and
|
85 |
by the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:`90254`).
|