BWayne commited on
Commit
ed0a452
·
1 Parent(s): 7775b11

End of training

Browse files
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: lilt-en-1k_img
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # lilt-en-1k_img
14
+
15
+ This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 2.1240
18
+ - Able: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 20}
19
+ - Able caption: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2}
20
+ - Eading: {'precision': 0.1875, 'recall': 0.125, 'f1': 0.15, 'number': 24}
21
+ - Ext: {'precision': 0.7962962962962963, 'recall': 0.7962962962962963, 'f1': 0.7962962962962963, 'number': 54}
22
+ - Mage: {'precision': 0.5238095238095238, 'recall': 0.6666666666666666, 'f1': 0.5866666666666667, 'number': 33}
23
+ - Mage caption: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5}
24
+ - Ub heading: {'precision': 0.5858585858585859, 'recall': 0.7435897435897436, 'f1': 0.655367231638418, 'number': 78}
25
+ - Overall Precision: 0.5860
26
+ - Overall Recall: 0.5833
27
+ - Overall F1: 0.5847
28
+ - Overall Accuracy: 0.6767
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 5e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - training_steps: 2500
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Able | Able caption | Eading | Ext | Mage | Mage caption | Ub heading | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 0.8351 | 2.0 | 200 | 1.1577 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.1724137931034483, 'recall': 0.20833333333333334, 'f1': 0.18867924528301888, 'number': 24} | {'precision': 0.7321428571428571, 'recall': 0.7592592592592593, 'f1': 0.7454545454545455, 'number': 54} | {'precision': 0.5238095238095238, 'recall': 0.6666666666666666, 'f1': 0.5866666666666667, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.5662650602409639, 'recall': 0.6025641025641025, 'f1': 0.5838509316770186, 'number': 78} | 0.5476 | 0.5324 | 0.5399 | 0.6567 |
61
+ | 0.5827 | 4.0 | 400 | 1.7815 | {'precision': 0.21428571428571427, 'recall': 0.45, 'f1': 0.29032258064516125, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.23076923076923078, 'recall': 0.125, 'f1': 0.16216216216216217, 'number': 24} | {'precision': 0.5166666666666667, 'recall': 0.5740740740740741, 'f1': 0.543859649122807, 'number': 54} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.5789473684210527, 'recall': 0.5641025641025641, 'f1': 0.5714285714285715, 'number': 78} | 0.4462 | 0.4028 | 0.4234 | 0.52 |
62
+ | 0.4593 | 6.0 | 600 | 1.9964 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.16666666666666666, 'recall': 0.20833333333333334, 'f1': 0.1851851851851852, 'number': 24} | {'precision': 0.7547169811320755, 'recall': 0.7407407407407407, 'f1': 0.7476635514018692, 'number': 54} | {'precision': 0.5238095238095238, 'recall': 0.6666666666666666, 'f1': 0.5866666666666667, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.5641025641025641, 'recall': 0.5641025641025641, 'f1': 0.5641025641025641, 'number': 78} | 0.5441 | 0.5139 | 0.5286 | 0.6467 |
63
+ | 0.4241 | 8.0 | 800 | 1.6445 | {'precision': 0.21428571428571427, 'recall': 0.45, 'f1': 0.29032258064516125, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.23529411764705882, 'recall': 0.16666666666666666, 'f1': 0.19512195121951217, 'number': 24} | {'precision': 0.6666666666666666, 'recall': 0.7407407407407407, 'f1': 0.7017543859649122, 'number': 54} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.6410256410256411, 'recall': 0.6410256410256411, 'f1': 0.6410256410256411, 'number': 78} | 0.515 | 0.4769 | 0.4952 | 0.56 |
64
+ | 0.3912 | 10.0 | 1000 | 1.9949 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.2727272727272727, 'recall': 0.125, 'f1': 0.17142857142857143, 'number': 24} | {'precision': 0.5892857142857143, 'recall': 0.6111111111111112, 'f1': 0.6, 'number': 54} | {'precision': 0.5238095238095238, 'recall': 0.6666666666666666, 'f1': 0.5866666666666667, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.6190476190476191, 'recall': 0.6666666666666666, 'f1': 0.6419753086419754, 'number': 78} | 0.5612 | 0.5093 | 0.5340 | 0.6733 |
65
+ | 0.404 | 12.0 | 1200 | 1.8376 | {'precision': 0.21428571428571427, 'recall': 0.45, 'f1': 0.29032258064516125, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.25, 'recall': 0.16666666666666666, 'f1': 0.2, 'number': 24} | {'precision': 0.7592592592592593, 'recall': 0.7592592592592593, 'f1': 0.7592592592592593, 'number': 54} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.6304347826086957, 'recall': 0.7435897435897436, 'f1': 0.6823529411764706, 'number': 78} | 0.5411 | 0.5185 | 0.5296 | 0.5733 |
66
+ | 0.3941 | 14.0 | 1400 | 2.1137 | {'precision': 0.21428571428571427, 'recall': 0.45, 'f1': 0.29032258064516125, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.2727272727272727, 'recall': 0.125, 'f1': 0.17142857142857143, 'number': 24} | {'precision': 0.6226415094339622, 'recall': 0.6111111111111112, 'f1': 0.616822429906542, 'number': 54} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.625, 'recall': 0.7051282051282052, 'f1': 0.6626506024096386, 'number': 78} | 0.5102 | 0.4630 | 0.4854 | 0.56 |
67
+ | 0.3963 | 16.0 | 1600 | 1.9659 | {'precision': 0.21428571428571427, 'recall': 0.45, 'f1': 0.29032258064516125, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.375, 'recall': 0.125, 'f1': 0.1875, 'number': 24} | {'precision': 0.6909090909090909, 'recall': 0.7037037037037037, 'f1': 0.6972477064220184, 'number': 54} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.638095238095238, 'recall': 0.8589743589743589, 'f1': 0.7322404371584699, 'number': 78} | 0.5571 | 0.5417 | 0.5493 | 0.5967 |
68
+ | 0.3929 | 18.0 | 1800 | 2.5380 | {'precision': 0.21428571428571427, 'recall': 0.45, 'f1': 0.29032258064516125, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.25, 'recall': 0.125, 'f1': 0.16666666666666666, 'number': 24} | {'precision': 0.5254237288135594, 'recall': 0.5740740740740741, 'f1': 0.5486725663716815, 'number': 54} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.5833333333333334, 'recall': 0.5384615384615384, 'f1': 0.5599999999999999, 'number': 78} | 0.4474 | 0.3935 | 0.4187 | 0.5233 |
69
+ | 0.3895 | 20.0 | 2000 | 2.2060 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.1875, 'recall': 0.125, 'f1': 0.15, 'number': 24} | {'precision': 0.7142857142857143, 'recall': 0.7407407407407407, 'f1': 0.7272727272727273, 'number': 54} | {'precision': 0.5238095238095238, 'recall': 0.6666666666666666, 'f1': 0.5866666666666667, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.5894736842105263, 'recall': 0.717948717948718, 'f1': 0.6473988439306358, 'number': 78} | 0.5708 | 0.5602 | 0.5654 | 0.67 |
70
+ | 0.3783 | 22.0 | 2200 | 2.2297 | {'precision': 0.21428571428571427, 'recall': 0.45, 'f1': 0.29032258064516125, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.1875, 'recall': 0.125, 'f1': 0.15, 'number': 24} | {'precision': 0.7142857142857143, 'recall': 0.7407407407407407, 'f1': 0.7272727272727273, 'number': 54} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.5851063829787234, 'recall': 0.7051282051282052, 'f1': 0.6395348837209303, 'number': 78} | 0.5047 | 0.4954 | 0.5 | 0.5467 |
71
+ | 0.3833 | 24.0 | 2400 | 2.1240 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.1875, 'recall': 0.125, 'f1': 0.15, 'number': 24} | {'precision': 0.7962962962962963, 'recall': 0.7962962962962963, 'f1': 0.7962962962962963, 'number': 54} | {'precision': 0.5238095238095238, 'recall': 0.6666666666666666, 'f1': 0.5866666666666667, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.5858585858585859, 'recall': 0.7435897435897436, 'f1': 0.655367231638418, 'number': 78} | 0.5860 | 0.5833 | 0.5847 | 0.6767 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.28.1
77
+ - Pytorch 2.0.0+cu117
78
+ - Datasets 2.11.0
79
+ - Tokenizers 0.13.3
logs/events.out.tfevents.1682073480.turing-machine.19227.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:112664f825342329883c2362e01885bd0804cb6f885537668a2f95b850e68b44
3
- size 9031
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0196c11c7a8e8bc0d6f2a0b0835cfc5e1be6580ffc12707d6aec6ef5101de0c
3
+ size 12690
logs/events.out.tfevents.1682073862.turing-machine.19227.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60ff3cee6c1e085dc9302bef10fd98d9646e848565ad71fead4ca81f72e59508
3
+ size 592
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "LayoutLMv3FeatureExtractor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv3Processor",
19
+ "resample": 2,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 224,
23
+ "width": 224
24
+ },
25
+ "tesseract_config": ""
26
+ }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bffd1c01189a525a225d476d38f8332c53488e8ab8539429965740ac1ecfcccb
3
  size 520821201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4fad84b6ec249270e54151786d9d541ceeefd8aa80f4e97b1f981d348032013
3
  size 520821201
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "bos_token": {
4
+ "__type": "AddedToken",
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "clean_up_tokenization_spaces": true,
12
+ "cls_token": {
13
+ "__type": "AddedToken",
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "cls_token_box": [
21
+ 0,
22
+ 0,
23
+ 0,
24
+ 0
25
+ ],
26
+ "eos_token": {
27
+ "__type": "AddedToken",
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ },
34
+ "errors": "replace",
35
+ "mask_token": {
36
+ "__type": "AddedToken",
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false
42
+ },
43
+ "model_max_length": 512,
44
+ "only_label_first_subword": true,
45
+ "pad_token": {
46
+ "__type": "AddedToken",
47
+ "content": "<pad>",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false
52
+ },
53
+ "pad_token_box": [
54
+ 0,
55
+ 0,
56
+ 0,
57
+ 0
58
+ ],
59
+ "pad_token_label": -100,
60
+ "processor_class": "LayoutLMv3Processor",
61
+ "sep_token": {
62
+ "__type": "AddedToken",
63
+ "content": "</s>",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false
68
+ },
69
+ "sep_token_box": [
70
+ 0,
71
+ 0,
72
+ 0,
73
+ 0
74
+ ],
75
+ "tokenizer_class": "LayoutLMv3Tokenizer",
76
+ "trim_offsets": true,
77
+ "unk_token": {
78
+ "__type": "AddedToken",
79
+ "content": "<unk>",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false
84
+ }
85
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff