English
alescire94 commited on
Commit
dd54e12
1 Parent(s): ffb4f16

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -6
README.md CHANGED
@@ -8,8 +8,7 @@ language:
8
 
9
 
10
  <div align="center">
11
- <img src="https://github.com/Babelscape/FENICE/blob/master/new_logo.png?raw=True" height="150">
12
- <img src="https://github.com/Babelscape/FENICE/blob/master/Sapienza_Babelscape.png?raw=true" height="50">
13
  </div>
14
 
15
  # Factuality Evaluation of summarization based on Natural Language Inference and Claim Extraction
@@ -19,7 +18,9 @@ language:
19
  [![Paper](http://img.shields.io/badge/paper-ACL--anthology-B31B1B.svg)](https://aclanthology.org/2024.findings-acl.841.pdf)
20
  [![License: CC BY-NC-SA 4.0](https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc-sa/4.0/)
21
 
22
-
 
 
23
  FENICE (Factuality Evaluation of Summarization based on Natural Language Inference and Claim Extraction) is a factuality-oriented metric for summarization.
24
  This package implements the FENICE metric, allowing users to evaluate the factual consistency of document summaries.
25
 
@@ -28,7 +29,7 @@ This package implements the FENICE metric, allowing users to evaluate the factua
28
  Factual consistency in summarization is critical for ensuring that the generated summaries accurately reflect the content of the original documents.
29
  FENICE leverages NLI and claim extraction techniques to assess the factual alignment between a summary and its corresponding document.
30
 
31
- For more details, you can read the full paper: [FENICE: Factuality Evaluation of Summarization based on Natural Language Inference and Claim Extraction](https://arxiv.org/abs/2403.02270).
32
 
33
  ## 🛠️ Installation
34
 
@@ -41,7 +42,12 @@ conda activate FENICE
41
  To install the FENICE package, you can use `pip`:
42
 
43
  ```sh
44
- pip install git+https://github.com/Babelscape/FENICE.git
 
 
 
 
 
45
  ```
46
 
47
  ## Requirements
@@ -49,7 +55,6 @@ pip install git+https://github.com/Babelscape/FENICE.git
49
  The package requires the following dependencies:
50
 
51
  • spacy==3.7.4
52
- • en_core_web_sm
53
  • fastcoref==2.1.6
54
  • transformers~=4.38.2
55
  • sentencepiece==0.2.0
 
8
 
9
 
10
  <div align="center">
11
+ <img src="https://github.com/Babelscape/FENICE/blob/master/new_logo.png?raw=True" height="200", width="200">
 
12
  </div>
13
 
14
  # Factuality Evaluation of summarization based on Natural Language Inference and Claim Extraction
 
18
  [![Paper](http://img.shields.io/badge/paper-ACL--anthology-B31B1B.svg)](https://aclanthology.org/2024.findings-acl.841.pdf)
19
  [![License: CC BY-NC-SA 4.0](https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc-sa/4.0/)
20
 
21
+ <div align='center'>
22
+ <img src="https://github.com/Babelscape/FENICE/blob/master/Sapienza_Babelscape.png?raw=True" height="70">
23
+ </div>
24
  FENICE (Factuality Evaluation of Summarization based on Natural Language Inference and Claim Extraction) is a factuality-oriented metric for summarization.
25
  This package implements the FENICE metric, allowing users to evaluate the factual consistency of document summaries.
26
 
 
29
  Factual consistency in summarization is critical for ensuring that the generated summaries accurately reflect the content of the original documents.
30
  FENICE leverages NLI and claim extraction techniques to assess the factual alignment between a summary and its corresponding document.
31
 
32
+ For more details, you can read the full paper: [FENICE: Factuality Evaluation of Summarization based on Natural Language Inference and Claim Extraction](https://aclanthology.org/2024.findings-acl.841/).
33
 
34
  ## 🛠️ Installation
35
 
 
42
  To install the FENICE package, you can use `pip`:
43
 
44
  ```sh
45
+ pip install FENICE
46
+ ```
47
+
48
+ install spacy model:
49
+ ```sh
50
+ python -m spacy download en_core_web_sm
51
  ```
52
 
53
  ## Requirements
 
55
  The package requires the following dependencies:
56
 
57
  • spacy==3.7.4
 
58
  • fastcoref==2.1.6
59
  • transformers~=4.38.2
60
  • sentencepiece==0.2.0