File size: 3,164 Bytes
99a7fd4 25e3675 91f4e49 25e3675 91f4e49 25e3675 91f4e49 25e3675 91f4e49 25e3675 91f4e49 25e3675 91f4e49 25e3675 91f4e49 25e3675 91f4e49 25e3675 91f4e49 99a7fd4 25e3675 0f0ae56 82dd2ee 91f4e49 99a7fd4 25e3675 99a7fd4 25e3675 0f0ae56 25e3675 0f0ae56 25e3675 0f0ae56 25e3675 0f0ae56 25e3675 99a7fd4 25e3675 99a7fd4 578f626 99a7fd4 25e3675 99a7fd4 25e3675 99a7fd4 25e3675 99a7fd4 25e3675 99a7fd4 457acb8 b9907f1 457acb8 25e3675 0829e18 646039e 0829e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
annotations_creators:
- machine-generated
language_creators:
- machine-generated
widget:
- text: George Washington went to Washington.
- text: What is the seventh tallest mountain in North America?
tags:
- named-entity-recognition
- sequence-tagger-model
datasets:
- Babelscape/cner
language:
- en
pretty_name: cner-model
source_datasets:
- original
task_categories:
- structure-prediction
task_ids:
- named-entity-recognition
---
# CNER: Concept and Named Entity Recognition
This is the model card for the NAACL 2024 paper [CNER: Concept and Named Entity Recognition](https://aclanthology.org/2024.naacl-long.461/).
We fine-tuned a language model (DeBERTa-v3-base) for 1 epoch on our [CNER dataset](https://huggingface.co/datasets/Babelscape/cner) using the default hyperparameters, optimizer and architecture of Hugging Face, therefore the results of this model may differ from the ones presented in the paper.
The resulting CNER model is able to jointly identifying and classifying concepts and named entities with fine-grained tags.
**If you use the model, please reference this work in your paper**:
```bibtex
@inproceedings{martinelli-etal-2024-cner,
title = "{CNER}: Concept and Named Entity Recognition",
author = "Martinelli, Giuliano and
Molfese, Francesco and
Tedeschi, Simone and
Fern{\'a}ndez-Castro, Alberte and
Navigli, Roberto",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.461",
pages = "8329--8344",
}
```
The original repository for the paper can be found at [https://github.com/Babelscape/cner](https://github.com/Babelscape/cner).
## How to use
You can use this model with Transformers NER *pipeline*.
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("Babelscape/cner-model")
model = AutoModelForTokenClassification.from_pretrained("Babelscape/cner-model")
nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
example = "What is the seventh tallest mountain in North America?"
ner_results = nlp(example)
print(ner_results)
```
## Classes
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e9ccd84ce78d665a50f78b/2K3NZ79go3Zjf3qFeHO0O.png" alt="drawing" />
## Licensing Information
Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/). Copyright of the dataset contents and models belongs to the original copyright holders.
`microsoft/deberta-v3-base` is released under the [MIT license](https://choosealicense.com/licenses/mit/).
|