BadreddineHug
commited on
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv3-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: Output_LayoutLMv3_1
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# Output_LayoutLMv3_1
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-large](https://huggingface.co/microsoft/layoutlmv3-large) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.2963
|
24 |
+
- Precision: 0.8017
|
25 |
+
- Recall: 0.8407
|
26 |
+
- F1: 0.8207
|
27 |
+
- Accuracy: 0.9724
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 1e-05
|
47 |
+
- train_batch_size: 2
|
48 |
+
- eval_batch_size: 2
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- training_steps: 3000
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 2.27 | 100 | 0.1310 | 0.7254 | 0.7832 | 0.7532 | 0.9619 |
|
59 |
+
| No log | 4.55 | 200 | 0.1070 | 0.8333 | 0.8407 | 0.8370 | 0.9733 |
|
60 |
+
| No log | 6.82 | 300 | 0.1617 | 0.8421 | 0.8496 | 0.8458 | 0.9752 |
|
61 |
+
| No log | 9.09 | 400 | 0.1895 | 0.8145 | 0.7965 | 0.8054 | 0.9705 |
|
62 |
+
| 0.074 | 11.36 | 500 | 0.1689 | 0.8018 | 0.7876 | 0.7946 | 0.9686 |
|
63 |
+
| 0.074 | 13.64 | 600 | 0.1659 | 0.8291 | 0.8584 | 0.8435 | 0.9771 |
|
64 |
+
| 0.074 | 15.91 | 700 | 0.2043 | 0.8077 | 0.8363 | 0.8217 | 0.9705 |
|
65 |
+
| 0.074 | 18.18 | 800 | 0.2111 | 0.8151 | 0.8584 | 0.8362 | 0.9743 |
|
66 |
+
| 0.074 | 20.45 | 900 | 0.1938 | 0.8390 | 0.8761 | 0.8571 | 0.9762 |
|
67 |
+
| 0.0072 | 22.73 | 1000 | 0.1802 | 0.8319 | 0.8540 | 0.8428 | 0.98 |
|
68 |
+
| 0.0072 | 25.0 | 1100 | 0.2604 | 0.7940 | 0.8186 | 0.8061 | 0.9695 |
|
69 |
+
| 0.0072 | 27.27 | 1200 | 0.2550 | 0.8025 | 0.8451 | 0.8233 | 0.9733 |
|
70 |
+
| 0.0072 | 29.55 | 1300 | 0.2632 | 0.8077 | 0.8363 | 0.8217 | 0.9705 |
|
71 |
+
| 0.0072 | 31.82 | 1400 | 0.2865 | 0.8155 | 0.8407 | 0.8279 | 0.9714 |
|
72 |
+
| 0.0018 | 34.09 | 1500 | 0.2554 | 0.8253 | 0.8363 | 0.8308 | 0.9743 |
|
73 |
+
| 0.0018 | 36.36 | 1600 | 0.2763 | 0.8101 | 0.8496 | 0.8294 | 0.9743 |
|
74 |
+
| 0.0018 | 38.64 | 1700 | 0.2541 | 0.8197 | 0.8451 | 0.8322 | 0.9743 |
|
75 |
+
| 0.0018 | 40.91 | 1800 | 0.2785 | 0.8025 | 0.8628 | 0.8316 | 0.9724 |
|
76 |
+
| 0.0018 | 43.18 | 1900 | 0.2760 | 0.8059 | 0.8451 | 0.8251 | 0.9733 |
|
77 |
+
| 0.001 | 45.45 | 2000 | 0.2956 | 0.8155 | 0.8407 | 0.8279 | 0.9733 |
|
78 |
+
| 0.001 | 47.73 | 2100 | 0.2998 | 0.8017 | 0.8407 | 0.8207 | 0.9724 |
|
79 |
+
| 0.001 | 50.0 | 2200 | 0.3007 | 0.8017 | 0.8407 | 0.8207 | 0.9724 |
|
80 |
+
| 0.001 | 52.27 | 2300 | 0.3000 | 0.8017 | 0.8407 | 0.8207 | 0.9724 |
|
81 |
+
| 0.001 | 54.55 | 2400 | 0.3031 | 0.8017 | 0.8407 | 0.8207 | 0.9724 |
|
82 |
+
| 0.0002 | 56.82 | 2500 | 0.3174 | 0.7950 | 0.8407 | 0.8172 | 0.9714 |
|
83 |
+
| 0.0002 | 59.09 | 2600 | 0.3061 | 0.7950 | 0.8407 | 0.8172 | 0.9714 |
|
84 |
+
| 0.0002 | 61.36 | 2700 | 0.3059 | 0.7908 | 0.8363 | 0.8129 | 0.9705 |
|
85 |
+
| 0.0002 | 63.64 | 2800 | 0.2988 | 0.8017 | 0.8407 | 0.8207 | 0.9724 |
|
86 |
+
| 0.0002 | 65.91 | 2900 | 0.2972 | 0.8017 | 0.8407 | 0.8207 | 0.9724 |
|
87 |
+
| 0.0001 | 68.18 | 3000 | 0.2963 | 0.8017 | 0.8407 | 0.8207 | 0.9724 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.39.2
|
93 |
+
- Pytorch 2.2.2+cu121
|
94 |
+
- Datasets 2.18.0
|
95 |
+
- Tokenizers 0.15.2
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1424100996
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e0639072edbfa58385c866e0b92463623272b159360ce93b8abe7e780f2992a
|
3 |
size 1424100996
|
runs/Apr01_20-13-19_fgmed03.irtse-pf.ext/events.out.tfevents.1711995206.fgmed03.irtse-pf.ext.2255075.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91d0c8ccda0d555ade73fc81975bd6eebe2187dc7d08c5fbc74784ff9448b918
|
3 |
+
size 20996
|