File size: 2,687 Bytes
a676f25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: gpt2-kl_001_05_hscnspecial-hs_cn
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt2-kl_001_05_hscnspecial-hs_cn

This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5513

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 21
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 73.5241       | 0.02  | 10   | 69.5822         |
| 46.0925       | 0.04  | 20   | 33.0099         |
| 13.5527       | 0.06  | 30   | 10.6424         |
| 6.8151        | 0.08  | 40   | 4.2013          |
| 3.5806        | 0.1   | 50   | 2.0893          |
| 1.4772        | 0.12  | 60   | 1.1276          |
| 1.1166        | 0.14  | 70   | 0.8410          |
| 0.8952        | 0.16  | 80   | 0.7324          |
| 0.7517        | 0.18  | 90   | 0.6448          |
| 0.7044        | 0.2   | 100  | 0.6761          |
| 0.6069        | 0.22  | 110  | 0.6436          |
| 0.6184        | 0.24  | 120  | 0.6057          |
| 0.6394        | 0.26  | 130  | 0.5877          |
| 0.6243        | 0.28  | 140  | 0.5719          |
| 0.598         | 0.3   | 150  | 0.5675          |
| 0.5848        | 0.32  | 160  | 0.5645          |
| 0.5161        | 0.34  | 170  | 0.5662          |
| 0.6247        | 0.36  | 180  | 0.5665          |
| 0.6243        | 0.38  | 190  | 0.5592          |
| 0.5768        | 0.4   | 200  | 0.5569          |
| 0.68          | 0.42  | 210  | 0.5583          |
| 0.627         | 0.44  | 220  | 0.5539          |
| 0.5369        | 0.46  | 230  | 0.5576          |
| 0.5449        | 0.48  | 240  | 0.5576          |
| 0.5456        | 0.5   | 250  | 0.5494          |
| 0.55          | 0.52  | 260  | 0.5559          |
| 0.5595        | 0.54  | 270  | 0.5525          |
| 0.5821        | 0.56  | 280  | 0.5513          |


### Framework versions

- Transformers 4.29.0.dev0
- Pytorch 1.12.0a0+bd13bc6
- Datasets 2.12.0
- Tokenizers 0.13.3