File size: 3,135 Bytes
2c1929e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: gpt2-kl_01_04-hs_cn-loto_muslim
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-kl_01_04-hs_cn-loto_muslim
This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5380
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 21
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 73.5693 | 0.03 | 10 | 65.1086 |
| 31.2617 | 0.06 | 20 | 18.3949 |
| 12.0113 | 0.08 | 30 | 7.2956 |
| 3.702 | 0.11 | 40 | 2.9472 |
| 1.8413 | 0.14 | 50 | 1.2727 |
| 1.3358 | 0.17 | 60 | 0.9255 |
| 0.8787 | 0.2 | 70 | 0.7903 |
| 0.7065 | 0.23 | 80 | 0.7346 |
| 0.6537 | 0.25 | 90 | 0.6680 |
| 0.8109 | 0.28 | 100 | 0.6131 |
| 0.6697 | 0.31 | 110 | 0.5983 |
| 0.6555 | 0.34 | 120 | 0.5935 |
| 0.6505 | 0.37 | 130 | 0.5838 |
| 0.684 | 0.4 | 140 | 0.5768 |
| 0.6723 | 0.42 | 150 | 0.5736 |
| 0.687 | 0.45 | 160 | 0.5709 |
| 0.6504 | 0.48 | 170 | 0.5710 |
| 0.711 | 0.51 | 180 | 0.5685 |
| 0.7001 | 0.54 | 190 | 0.5695 |
| 0.5758 | 0.57 | 200 | 0.5651 |
| 0.6491 | 0.59 | 210 | 0.5652 |
| 0.6248 | 0.62 | 220 | 0.5617 |
| 0.579 | 0.65 | 230 | 0.5515 |
| 0.5784 | 0.68 | 240 | 0.5500 |
| 0.5178 | 0.71 | 250 | 0.5550 |
| 0.6129 | 0.74 | 260 | 0.5530 |
| 0.5729 | 0.76 | 270 | 0.5467 |
| 0.5687 | 0.79 | 280 | 0.5429 |
| 0.6217 | 0.82 | 290 | 0.5413 |
| 0.5902 | 0.85 | 300 | 0.5402 |
| 0.6314 | 0.88 | 310 | 0.5362 |
| 0.5481 | 0.91 | 320 | 0.5354 |
| 0.6007 | 0.93 | 330 | 0.5333 |
| 0.5496 | 0.96 | 340 | 0.5326 |
| 0.6287 | 0.99 | 350 | 0.5329 |
| 0.5383 | 1.02 | 360 | 0.5366 |
| 0.5227 | 1.05 | 370 | 0.5380 |
### Framework versions
- Transformers 4.28.0
- Pytorch 1.11.0+cu113
- Datasets 2.11.0
- Tokenizers 0.13.3
|