File size: 1,712 Bytes
db0484a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f92f94
db0484a
a61650e
 
db0484a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a61650e
db0484a
 
 
 
 
 
 
a61650e
 
 
 
 
 
 
db0484a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: vilt-b32-mlm-mami
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vilt-b32-mlm-mami

This model is a fine-tuned version of [dandelin/vilt-b32-mlm](https://huggingface.co/dandelin/vilt-b32-mlm) on the MAMI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5796
- F1: 0.7899

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.6898        | 0.48  | 100  | 0.6631          | 0.6076 |
| 0.5824        | 0.96  | 200  | 0.5055          | 0.7545 |
| 0.4306        | 1.44  | 300  | 0.4586          | 0.7861 |
| 0.4207        | 1.91  | 400  | 0.4439          | 0.7927 |
| 0.3055        | 2.39  | 500  | 0.4912          | 0.7949 |
| 0.2582        | 2.87  | 600  | 0.4921          | 0.7873 |
| 0.1875        | 3.35  | 700  | 0.5796          | 0.7899 |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3