File size: 1,772 Bytes
e550132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: transformers
base_model: ai4bharat/IndicBART
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: results
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results

This model is a fine-tuned version of [ai4bharat/IndicBART](https://huggingface.co/ai4bharat/IndicBART) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0863
- Wer: 0.4892

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Wer    |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 1.4597        | 0.4504 | 4000  | 0.3822          | 0.6293 |
| 0.3574        | 0.9008 | 8000  | 0.2432          | 0.5683 |
| 0.252         | 1.3512 | 12000 | 0.1656          | 0.5286 |
| 0.1921        | 1.8016 | 16000 | 0.1277          | 0.5102 |
| 0.1583        | 2.2520 | 20000 | 0.1074          | 0.5010 |
| 0.1383        | 2.7024 | 24000 | 0.0967          | 0.4937 |
| 0.1266        | 3.1528 | 28000 | 0.0896          | 0.4904 |
| 0.1199        | 3.6032 | 32000 | 0.0863          | 0.4892 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.1.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1