Bakobiibizo
commited on
Upload folder using huggingface_hub
Browse files- README.md +6 -0
- config copy.json +22 -0
- config.json +21 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- train_log.txt +281 -0
- training_args copy.json +132 -0
- training_args.bin +3 -0
- training_args.json +38 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## TextAttack Model Card
|
2 |
+
|
3 |
+
This `lstm` model was fine-tuned using TextAttackand the *yelp_polarity* dataset loaded using the huggingface library. The model was fine-tuned for 50 epochs with a batch size of 8, a maximum sequence length of 128, and an initial learning rate of 1e-05.
|
4 |
+
Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9174473684210527, as measured by the eval set accuracy, found after 28 epochs.
|
5 |
+
|
6 |
+
For more information on the source repo, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
config copy.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForSequenceClassification"
|
4 |
+
],
|
5 |
+
"model_name": "my_model",
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"finetuning_task": "yelp_polarity",
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"type_vocab_size": 2,
|
21 |
+
"vocab_size": 30522
|
22 |
+
}
|
config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForSequenceClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"finetuning_task": "yelp_polarity",
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 3072,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"type_vocab_size": 2,
|
20 |
+
"vocab_size": 30522
|
21 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c70002c363b84cb50fc02d63e9ebbc2bca966638b2958446c5a51094c7348c2e
|
3 |
+
size 320670479
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "model_max_length": 512}
|
train_log.txt
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Writing logs to ./outputs/2024-03-22-01-16-17-693140/train_log.txt.
|
2 |
+
Wrote original training args to ./outputs/2024-03-22-01-16-17-693140/training_args.json.
|
3 |
+
***** Running training *****
|
4 |
+
Num examples = 560000
|
5 |
+
Num epochs = 50
|
6 |
+
Num clean epochs = 50
|
7 |
+
Instantaneous batch size per device = 8
|
8 |
+
Total train batch size (w. parallel, distributed & accumulation) = 8
|
9 |
+
Gradient accumulation steps = 1
|
10 |
+
Total optimization steps = 3500000
|
11 |
+
==========================================================
|
12 |
+
Epoch 1
|
13 |
+
Running clean epoch 1/50
|
14 |
+
Train accuracy: 81.85%
|
15 |
+
Eval accuracy: 88.42%
|
16 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
17 |
+
==========================================================
|
18 |
+
Epoch 2
|
19 |
+
Running clean epoch 2/50
|
20 |
+
Train accuracy: 88.95%
|
21 |
+
Eval accuracy: 88.87%
|
22 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
23 |
+
==========================================================
|
24 |
+
Epoch 3
|
25 |
+
Running clean epoch 3/50
|
26 |
+
Train accuracy: 89.65%
|
27 |
+
Eval accuracy: 89.58%
|
28 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
29 |
+
==========================================================
|
30 |
+
Epoch 4
|
31 |
+
Running clean epoch 4/50
|
32 |
+
Train accuracy: 90.02%
|
33 |
+
Eval accuracy: 89.53%
|
34 |
+
==========================================================
|
35 |
+
Epoch 5
|
36 |
+
Running clean epoch 5/50
|
37 |
+
Train accuracy: 90.22%
|
38 |
+
Eval accuracy: 89.73%
|
39 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
40 |
+
==========================================================
|
41 |
+
Epoch 6
|
42 |
+
Running clean epoch 6/50
|
43 |
+
Train accuracy: 90.43%
|
44 |
+
Eval accuracy: 89.60%
|
45 |
+
==========================================================
|
46 |
+
Epoch 7
|
47 |
+
Running clean epoch 7/50
|
48 |
+
Train accuracy: 90.64%
|
49 |
+
Eval accuracy: 89.83%
|
50 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
51 |
+
==========================================================
|
52 |
+
Epoch 8
|
53 |
+
Running clean epoch 8/50
|
54 |
+
Train accuracy: 90.79%
|
55 |
+
Eval accuracy: 90.04%
|
56 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
57 |
+
==========================================================
|
58 |
+
Epoch 9
|
59 |
+
Running clean epoch 9/50
|
60 |
+
Train accuracy: 90.97%
|
61 |
+
Eval accuracy: 90.22%
|
62 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
63 |
+
==========================================================
|
64 |
+
Epoch 10
|
65 |
+
Running clean epoch 10/50
|
66 |
+
Train accuracy: 91.16%
|
67 |
+
Eval accuracy: 90.33%
|
68 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
69 |
+
==========================================================
|
70 |
+
Epoch 11
|
71 |
+
Running clean epoch 11/50
|
72 |
+
Train accuracy: 91.37%
|
73 |
+
Eval accuracy: 90.50%
|
74 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
75 |
+
==========================================================
|
76 |
+
Epoch 12
|
77 |
+
Running clean epoch 12/50
|
78 |
+
Train accuracy: 91.58%
|
79 |
+
Eval accuracy: 90.42%
|
80 |
+
==========================================================
|
81 |
+
Epoch 13
|
82 |
+
Running clean epoch 13/50
|
83 |
+
Train accuracy: 91.81%
|
84 |
+
Eval accuracy: 90.64%
|
85 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
86 |
+
==========================================================
|
87 |
+
Epoch 14
|
88 |
+
Running clean epoch 14/50
|
89 |
+
Train accuracy: 92.01%
|
90 |
+
Eval accuracy: 90.71%
|
91 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
92 |
+
==========================================================
|
93 |
+
Epoch 15
|
94 |
+
Running clean epoch 15/50
|
95 |
+
Train accuracy: 92.23%
|
96 |
+
Eval accuracy: 90.88%
|
97 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
98 |
+
==========================================================
|
99 |
+
Epoch 16
|
100 |
+
Running clean epoch 16/50
|
101 |
+
Train accuracy: 92.41%
|
102 |
+
Eval accuracy: 90.95%
|
103 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
104 |
+
==========================================================
|
105 |
+
Epoch 17
|
106 |
+
Running clean epoch 17/50
|
107 |
+
Train accuracy: 92.59%
|
108 |
+
Eval accuracy: 90.72%
|
109 |
+
==========================================================
|
110 |
+
Epoch 18
|
111 |
+
Running clean epoch 18/50
|
112 |
+
Train accuracy: 92.78%
|
113 |
+
Eval accuracy: 91.12%
|
114 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
115 |
+
==========================================================
|
116 |
+
Epoch 19
|
117 |
+
Running clean epoch 19/50
|
118 |
+
Train accuracy: 92.97%
|
119 |
+
Eval accuracy: 91.19%
|
120 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
121 |
+
==========================================================
|
122 |
+
Epoch 20
|
123 |
+
Running clean epoch 20/50
|
124 |
+
Train accuracy: 93.12%
|
125 |
+
Eval accuracy: 91.43%
|
126 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
127 |
+
==========================================================
|
128 |
+
Epoch 21
|
129 |
+
Running clean epoch 21/50
|
130 |
+
Train accuracy: 93.28%
|
131 |
+
Eval accuracy: 91.47%
|
132 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
133 |
+
==========================================================
|
134 |
+
Epoch 22
|
135 |
+
Running clean epoch 22/50
|
136 |
+
Train accuracy: 93.42%
|
137 |
+
Eval accuracy: 91.52%
|
138 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
139 |
+
==========================================================
|
140 |
+
Epoch 23
|
141 |
+
Running clean epoch 23/50
|
142 |
+
Train accuracy: 93.54%
|
143 |
+
Eval accuracy: 91.71%
|
144 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
145 |
+
==========================================================
|
146 |
+
Epoch 24
|
147 |
+
Running clean epoch 24/50
|
148 |
+
Train accuracy: 93.69%
|
149 |
+
Eval accuracy: 91.61%
|
150 |
+
==========================================================
|
151 |
+
Epoch 25
|
152 |
+
Running clean epoch 25/50
|
153 |
+
Train accuracy: 93.86%
|
154 |
+
Eval accuracy: 91.69%
|
155 |
+
==========================================================
|
156 |
+
Epoch 26
|
157 |
+
Running clean epoch 26/50
|
158 |
+
Train accuracy: 93.98%
|
159 |
+
Eval accuracy: 91.63%
|
160 |
+
==========================================================
|
161 |
+
Epoch 27
|
162 |
+
Running clean epoch 27/50
|
163 |
+
Train accuracy: 94.12%
|
164 |
+
Eval accuracy: 91.57%
|
165 |
+
==========================================================
|
166 |
+
Epoch 28
|
167 |
+
Running clean epoch 28/50
|
168 |
+
Train accuracy: 94.24%
|
169 |
+
Eval accuracy: 91.74%
|
170 |
+
Best score found. Saved model to ./outputs/2024-03-22-01-16-17-693140/best_model/
|
171 |
+
==========================================================
|
172 |
+
Epoch 29
|
173 |
+
Running clean epoch 29/50
|
174 |
+
Train accuracy: 94.37%
|
175 |
+
Eval accuracy: 91.73%
|
176 |
+
==========================================================
|
177 |
+
Epoch 30
|
178 |
+
Running clean epoch 30/50
|
179 |
+
Train accuracy: 94.47%
|
180 |
+
Eval accuracy: 91.45%
|
181 |
+
==========================================================
|
182 |
+
Epoch 31
|
183 |
+
Running clean epoch 31/50
|
184 |
+
Train accuracy: 94.62%
|
185 |
+
Eval accuracy: 91.34%
|
186 |
+
==========================================================
|
187 |
+
Epoch 32
|
188 |
+
Running clean epoch 32/50
|
189 |
+
Train accuracy: 94.72%
|
190 |
+
Eval accuracy: 91.58%
|
191 |
+
==========================================================
|
192 |
+
Epoch 33
|
193 |
+
Running clean epoch 33/50
|
194 |
+
Train accuracy: 94.86%
|
195 |
+
Eval accuracy: 91.61%
|
196 |
+
==========================================================
|
197 |
+
Epoch 34
|
198 |
+
Running clean epoch 34/50
|
199 |
+
Train accuracy: 94.96%
|
200 |
+
Eval accuracy: 91.70%
|
201 |
+
==========================================================
|
202 |
+
Epoch 35
|
203 |
+
Running clean epoch 35/50
|
204 |
+
Train accuracy: 95.06%
|
205 |
+
Eval accuracy: 91.65%
|
206 |
+
==========================================================
|
207 |
+
Epoch 36
|
208 |
+
Running clean epoch 36/50
|
209 |
+
Train accuracy: 95.17%
|
210 |
+
Eval accuracy: 91.71%
|
211 |
+
==========================================================
|
212 |
+
Epoch 37
|
213 |
+
Running clean epoch 37/50
|
214 |
+
Train accuracy: 95.28%
|
215 |
+
Eval accuracy: 91.58%
|
216 |
+
==========================================================
|
217 |
+
Epoch 38
|
218 |
+
Running clean epoch 38/50
|
219 |
+
Train accuracy: 95.37%
|
220 |
+
Eval accuracy: 91.52%
|
221 |
+
==========================================================
|
222 |
+
Epoch 39
|
223 |
+
Running clean epoch 39/50
|
224 |
+
Train accuracy: 95.49%
|
225 |
+
Eval accuracy: 91.10%
|
226 |
+
==========================================================
|
227 |
+
Epoch 40
|
228 |
+
Running clean epoch 40/50
|
229 |
+
Train accuracy: 95.58%
|
230 |
+
Eval accuracy: 91.54%
|
231 |
+
==========================================================
|
232 |
+
Epoch 41
|
233 |
+
Running clean epoch 41/50
|
234 |
+
Train accuracy: 95.68%
|
235 |
+
Eval accuracy: 91.37%
|
236 |
+
==========================================================
|
237 |
+
Epoch 42
|
238 |
+
Running clean epoch 42/50
|
239 |
+
Train accuracy: 95.76%
|
240 |
+
Eval accuracy: 91.34%
|
241 |
+
==========================================================
|
242 |
+
Epoch 43
|
243 |
+
Running clean epoch 43/50
|
244 |
+
Train accuracy: 95.85%
|
245 |
+
Eval accuracy: 91.01%
|
246 |
+
==========================================================
|
247 |
+
Epoch 44
|
248 |
+
Running clean epoch 44/50
|
249 |
+
Train accuracy: 95.95%
|
250 |
+
Eval accuracy: 91.35%
|
251 |
+
==========================================================
|
252 |
+
Epoch 45
|
253 |
+
Running clean epoch 45/50
|
254 |
+
Train accuracy: 96.03%
|
255 |
+
Eval accuracy: 91.23%
|
256 |
+
==========================================================
|
257 |
+
Epoch 46
|
258 |
+
Running clean epoch 46/50
|
259 |
+
Train accuracy: 96.10%
|
260 |
+
Eval accuracy: 91.19%
|
261 |
+
==========================================================
|
262 |
+
Epoch 47
|
263 |
+
Running clean epoch 47/50
|
264 |
+
Train accuracy: 96.18%
|
265 |
+
Eval accuracy: 91.14%
|
266 |
+
==========================================================
|
267 |
+
Epoch 48
|
268 |
+
Running clean epoch 48/50
|
269 |
+
Train accuracy: 96.29%
|
270 |
+
Eval accuracy: 91.27%
|
271 |
+
==========================================================
|
272 |
+
Epoch 49
|
273 |
+
Running clean epoch 49/50
|
274 |
+
Train accuracy: 96.39%
|
275 |
+
Eval accuracy: 91.14%
|
276 |
+
==========================================================
|
277 |
+
Epoch 50
|
278 |
+
Running clean epoch 50/50
|
279 |
+
Train accuracy: 96.46%
|
280 |
+
Eval accuracy: 91.11%
|
281 |
+
Wrote README to ./outputs/2024-03-22-01-16-17-693140/README.md.
|
training_args copy.json
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"output_dir": "my_model",
|
3 |
+
"overwrite_output_dir": false,
|
4 |
+
"do_train": false,
|
5 |
+
"do_eval": false,
|
6 |
+
"do_predict": false,
|
7 |
+
"evaluation_strategy": "no",
|
8 |
+
"prediction_loss_only": false,
|
9 |
+
"per_device_train_batch_size": 8,
|
10 |
+
"per_device_eval_batch_size": 8,
|
11 |
+
"per_gpu_train_batch_size": null,
|
12 |
+
"per_gpu_eval_batch_size": null,
|
13 |
+
"gradient_accumulation_steps": 1,
|
14 |
+
"eval_accumulation_steps": null,
|
15 |
+
"eval_delay": 0,
|
16 |
+
"learning_rate": 5e-05,
|
17 |
+
"weight_decay": 0.0,
|
18 |
+
"adam_beta1": 0.9,
|
19 |
+
"adam_beta2": 0.999,
|
20 |
+
"adam_epsilon": 1e-08,
|
21 |
+
"max_grad_norm": 1.0,
|
22 |
+
"num_train_epochs": 3.0,
|
23 |
+
"max_steps": -1,
|
24 |
+
"lr_scheduler_type": "linear",
|
25 |
+
"lr_scheduler_kwargs": {},
|
26 |
+
"warmup_ratio": 0.0,
|
27 |
+
"warmup_steps": 0,
|
28 |
+
"log_level": "passive",
|
29 |
+
"log_level_replica": "warning",
|
30 |
+
"log_on_each_node": true,
|
31 |
+
"logging_dir": "my_model/training_args.json/runs/Mar22_01-08-45_dsmtyh100xx0153",
|
32 |
+
"logging_strategy": "steps",
|
33 |
+
"logging_first_step": false,
|
34 |
+
"logging_steps": 500,
|
35 |
+
"logging_nan_inf_filter": true,
|
36 |
+
"save_strategy": "steps",
|
37 |
+
"save_steps": 500,
|
38 |
+
"save_total_limit": null,
|
39 |
+
"save_safetensors": true,
|
40 |
+
"save_on_each_node": false,
|
41 |
+
"save_only_model": false,
|
42 |
+
"no_cuda": false,
|
43 |
+
"use_cpu": false,
|
44 |
+
"use_mps_device": false,
|
45 |
+
"seed": 42,
|
46 |
+
"data_seed": null,
|
47 |
+
"jit_mode_eval": false,
|
48 |
+
"use_ipex": false,
|
49 |
+
"bf16": false,
|
50 |
+
"fp16": false,
|
51 |
+
"fp16_opt_level": "O1",
|
52 |
+
"half_precision_backend": "auto",
|
53 |
+
"bf16_full_eval": false,
|
54 |
+
"fp16_full_eval": false,
|
55 |
+
"tf32": null,
|
56 |
+
"local_rank": 0,
|
57 |
+
"ddp_backend": null,
|
58 |
+
"tpu_num_cores": null,
|
59 |
+
"tpu_metrics_debug": false,
|
60 |
+
"debug": [],
|
61 |
+
"dataloader_drop_last": false,
|
62 |
+
"eval_steps": null,
|
63 |
+
"dataloader_num_workers": 0,
|
64 |
+
"dataloader_prefetch_factor": null,
|
65 |
+
"past_index": -1,
|
66 |
+
"run_name": "my_model",
|
67 |
+
"disable_tqdm": false,
|
68 |
+
"remove_unused_columns": true,
|
69 |
+
"label_names": null,
|
70 |
+
"load_best_model_at_end": false,
|
71 |
+
"metric_for_best_model": null,
|
72 |
+
"greater_is_better": null,
|
73 |
+
"ignore_data_skip": false,
|
74 |
+
"fsdp": [],
|
75 |
+
"fsdp_min_num_params": 0,
|
76 |
+
"fsdp_config": {
|
77 |
+
"min_num_params": 0,
|
78 |
+
"xla": false,
|
79 |
+
"xla_fsdp_v2": false,
|
80 |
+
"xla_fsdp_grad_ckpt": false
|
81 |
+
},
|
82 |
+
"fsdp_transformer_layer_cls_to_wrap": null,
|
83 |
+
"accelerator_config": {
|
84 |
+
"split_batches": false,
|
85 |
+
"dispatch_batches": null,
|
86 |
+
"even_batches": true,
|
87 |
+
"use_seedable_sampler": true
|
88 |
+
},
|
89 |
+
"deepspeed": null,
|
90 |
+
"label_smoothing_factor": 0.0,
|
91 |
+
"optim": "adamw_torch",
|
92 |
+
"optim_args": null,
|
93 |
+
"adafactor": false,
|
94 |
+
"group_by_length": false,
|
95 |
+
"length_column_name": "length",
|
96 |
+
"report_to": [],
|
97 |
+
"ddp_find_unused_parameters": null,
|
98 |
+
"ddp_bucket_cap_mb": null,
|
99 |
+
"ddp_broadcast_buffers": null,
|
100 |
+
"dataloader_pin_memory": true,
|
101 |
+
"dataloader_persistent_workers": false,
|
102 |
+
"skip_memory_metrics": true,
|
103 |
+
"use_legacy_prediction_loop": false,
|
104 |
+
"push_to_hub": false,
|
105 |
+
"resume_from_checkpoint": null,
|
106 |
+
"hub_model_id": null,
|
107 |
+
"hub_strategy": "every_save",
|
108 |
+
"hub_token": "<HUB_TOKEN>",
|
109 |
+
"hub_private_repo": false,
|
110 |
+
"hub_always_push": false,
|
111 |
+
"gradient_checkpointing": false,
|
112 |
+
"gradient_checkpointing_kwargs": null,
|
113 |
+
"include_inputs_for_metrics": false,
|
114 |
+
"fp16_backend": "auto",
|
115 |
+
"push_to_hub_model_id": null,
|
116 |
+
"push_to_hub_organization": null,
|
117 |
+
"push_to_hub_token": "<PUSH_TO_HUB_TOKEN>",
|
118 |
+
"mp_parameters": "",
|
119 |
+
"auto_find_batch_size": false,
|
120 |
+
"full_determinism": false,
|
121 |
+
"torchdynamo": null,
|
122 |
+
"ray_scope": "last",
|
123 |
+
"ddp_timeout": 1800,
|
124 |
+
"torch_compile": false,
|
125 |
+
"torch_compile_backend": null,
|
126 |
+
"torch_compile_mode": null,
|
127 |
+
"dispatch_batches": null,
|
128 |
+
"split_batches": null,
|
129 |
+
"include_tokens_per_second": false,
|
130 |
+
"include_num_input_tokens_seen": false,
|
131 |
+
"neftune_noise_alpha": null
|
132 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d353037f945468aa95fe1a5029d9a81e6ddc9e0c380a50912a7731a06f54c0ee
|
3 |
+
size 203
|
training_args.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_name_or_path": "lstm",
|
3 |
+
"attack": null,
|
4 |
+
"dataset": "yelp_polarity",
|
5 |
+
"task_type": "classification",
|
6 |
+
"model_max_length": null,
|
7 |
+
"model_num_labels": null,
|
8 |
+
"dataset_train_split": "train",
|
9 |
+
"dataset_eval_split": "test",
|
10 |
+
"filter_train_by_labels": null,
|
11 |
+
"filter_eval_by_labels": null,
|
12 |
+
"num_epochs": 50,
|
13 |
+
"num_clean_epochs": 1,
|
14 |
+
"attack_epoch_interval": 1,
|
15 |
+
"early_stopping_epochs": null,
|
16 |
+
"learning_rate": 1e-05,
|
17 |
+
"num_warmup_steps": 500,
|
18 |
+
"weight_decay": 0.01,
|
19 |
+
"per_device_train_batch_size": 8,
|
20 |
+
"per_device_eval_batch_size": 32,
|
21 |
+
"gradient_accumulation_steps": 1,
|
22 |
+
"random_seed": 786,
|
23 |
+
"parallel": false,
|
24 |
+
"load_best_model_at_end": false,
|
25 |
+
"alpha": 1.0,
|
26 |
+
"num_train_adv_examples": -1,
|
27 |
+
"query_budget_train": null,
|
28 |
+
"attack_num_workers_per_device": 1,
|
29 |
+
"output_dir": "./outputs/2024-03-22-01-16-17-693140",
|
30 |
+
"checkpoint_interval_steps": null,
|
31 |
+
"checkpoint_interval_epochs": null,
|
32 |
+
"save_last": true,
|
33 |
+
"log_to_tb": false,
|
34 |
+
"tb_log_dir": null,
|
35 |
+
"log_to_wandb": false,
|
36 |
+
"wandb_project": "textattack",
|
37 |
+
"logging_interval_step": 1
|
38 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|