Bandika commited on
Commit
f8c0785
·
1 Parent(s): 4605730

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.23 +/- 0.40
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:428e779e538f9b06678091e7274f141deed7afefc3fecbbdc0d76c33b86ebd48
3
+ size 108058
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb773bbc5e0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fb773bbe480>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1681660720947593727,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATtwQP84c4bwYSR8/TtwQP84c4bwYSR8/TtwQP84c4bwYSR8/TtwQP84c4bwYSR8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAu2abP+e9bD/sQLA/imC9vpfBHb+jUlC/YBeWPg6brT9qa4w/vB8SP0VTKT8JYn+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABO3BA/zhzhvBhJHz9Ngqc8YKqxu6l8qTxO3BA/zhzhvBhJHz9Ngqc8YKqxu6l8qTxO3BA/zhzhvBhJHz9Ngqc8YKqxu6l8qTxO3BA/zhzhvBhJHz9Ngqc8YKqxu6l8qTyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.5658616 -0.02747956 0.6222091 ]\n [ 0.5658616 -0.02747956 0.6222091 ]\n [ 0.5658616 -0.02747956 0.6222091 ]\n [ 0.5658616 -0.02747956 0.6222091 ]]",
38
+ "desired_goal": "[[ 1.2140726 0.9247727 1.3769813 ]\n [-0.36987716 -0.6162352 -0.81376094]\n [ 0.2931471 1.3562944 1.097028 ]\n [ 0.5707967 0.66142684 -0.99758965]]",
39
+ "observation": "[[ 0.5658616 -0.02747956 0.6222091 0.02044787 -0.00542192 0.02068933]\n [ 0.5658616 -0.02747956 0.6222091 0.02044787 -0.00542192 0.02068933]\n [ 0.5658616 -0.02747956 0.6222091 0.02044787 -0.00542192 0.02068933]\n [ 0.5658616 -0.02747956 0.6222091 0.02044787 -0.00542192 0.02068933]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8kGUvXZ4IDyGGno+9W6YvVY7Ib3s8ow8giYLPjUgKD21d5I+DqeJvW9Nh7380Pw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.07239141 0.00979435 0.2442418 ]\n [-0.07443038 -0.03936323 0.01720568]\n [ 0.13588908 0.04104634 0.28606954]\n [-0.06721316 -0.06606566 0.12344548]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINpVFYRc1EMCUhpRSlIwBbJRLMowBdJRHQKaWzJU5uIh1fZQoaAZoCWgPQwi/DwcJUd4NwJSGlFKUaBVLMmgWR0CmlnKyGBWgdX2UKGgGaAloD0MIwxA5fT3/DsCUhpRSlGgVSzJoFkdAppYa9wm3OXV9lChoBmgJaA9DCEwXYvVHOAvAlIaUUpRoFUsyaBZHQKaVw20AtFt1fZQoaAZoCWgPQwhruMg9Xb0IwJSGlFKUaBVLMmgWR0Cml7ArQPZqdX2UKGgGaAloD0MIqVDdXPw9EcCUhpRSlGgVSzJoFkdAppdWIO6NEXV9lChoBmgJaA9DCOAtkKD40Q3AlIaUUpRoFUsyaBZHQKaW/mmtQsR1fZQoaAZoCWgPQwgS3EjZIgkQwJSGlFKUaBVLMmgWR0CmlqcBltj1dX2UKGgGaAloD0MIc56xL9nIEMCUhpRSlGgVSzJoFkdAppicMLF4s3V9lChoBmgJaA9DCOYGQx1W2AzAlIaUUpRoFUsyaBZHQKaYQh37k4p1fZQoaAZoCWgPQwglsaTcfV4RwJSGlFKUaBVLMmgWR0Cml+pdSl3ydX2UKGgGaAloD0MInnsPlxzXDMCUhpRSlGgVSzJoFkdAppeSwKSgXnV9lChoBmgJaA9DCDMV4pF4eQ/AlIaUUpRoFUsyaBZHQKaZgmxdIG11fZQoaAZoCWgPQwjxoURLHm8PwJSGlFKUaBVLMmgWR0CmmSkYwZfldX2UKGgGaAloD0MIRuwTQDFyC8CUhpRSlGgVSzJoFkdAppjSPluFYnV9lChoBmgJaA9DCG0CDMufXxDAlIaUUpRoFUsyaBZHQKaYe0GeMAF1fZQoaAZoCWgPQwhsmKHxRGAQwJSGlFKUaBVLMmgWR0CmmnRTbWVedX2UKGgGaAloD0MIMPZefNHeDcCUhpRSlGgVSzJoFkdAppoaQFLWZ3V9lChoBmgJaA9DCOBkG7gDlRLAlIaUUpRoFUsyaBZHQKaZwotthux1fZQoaAZoCWgPQwivmBHeHiQNwJSGlFKUaBVLMmgWR0CmmWruIAOsdX2UKGgGaAloD0MIiGh0B7ETCcCUhpRSlGgVSzJoFkdApptapgkTpXV9lChoBmgJaA9DCEtXsI14ohLAlIaUUpRoFUsyaBZHQKabAJAMUh51fZQoaAZoCWgPQwhB740hAFgKwJSGlFKUaBVLMmgWR0Cmmqj8DSw4dX2UKGgGaAloD0MIe9tMhXhkD8CUhpRSlGgVSzJoFkdApppRcLSeAnV9lChoBmgJaA9DCO25TE2CFwvAlIaUUpRoFUsyaBZHQKacSrsByS51fZQoaAZoCWgPQwgtIorJGyALwJSGlFKUaBVLMmgWR0Cmm/DoQnQZdX2UKGgGaAloD0MIRiV1AprIB8CUhpRSlGgVSzJoFkdAppuZQSBbwHV9lChoBmgJaA9DCJ0SEJNwQQrAlIaUUpRoFUsyaBZHQKabQa9bor51fZQoaAZoCWgPQwgMPzifOhYTwJSGlFKUaBVLMmgWR0CmnTPoV2zOdX2UKGgGaAloD0MIyJQPQdWoCMCUhpRSlGgVSzJoFkdAppzZ2bG3nnV9lChoBmgJaA9DCMjuAiUFdgvAlIaUUpRoFUsyaBZHQKacgkO7QLN1fZQoaAZoCWgPQwjwi0tV2lIRwJSGlFKUaBVLMmgWR0CmnCrt/nW8dX2UKGgGaAloD0MIBfpEniT9CsCUhpRSlGgVSzJoFkdApp4V12aDw3V9lChoBmgJaA9DCJvG9lrQ2wrAlIaUUpRoFUsyaBZHQKadu9xIatN1fZQoaAZoCWgPQwhmiGNd3IYDwJSGlFKUaBVLMmgWR0CmnWSGBWgfdX2UKGgGaAloD0MIGjGzz2O0D8CUhpRSlGgVSzJoFkdApp0M47zTW3V9lChoBmgJaA9DCI6u0t119gfAlIaUUpRoFUsyaBZHQKae/d+G47R1fZQoaAZoCWgPQwhw6ZjzjJ0LwJSGlFKUaBVLMmgWR0CmnqRPfsNUdX2UKGgGaAloD0MI7iJMUS7NDsCUhpRSlGgVSzJoFkdApp5M8JUo8nV9lChoBmgJaA9DCIuLo3ITlQ/AlIaUUpRoFUsyaBZHQKad9b/Ot4l1fZQoaAZoCWgPQwgijQqcbEMNwJSGlFKUaBVLMmgWR0Cmn+kBsANodX2UKGgGaAloD0MI9z5VhQYCCsCUhpRSlGgVSzJoFkdApp+O5paibnV9lChoBmgJaA9DCEt2bATiVQ7AlIaUUpRoFUsyaBZHQKafNzshPj51fZQoaAZoCWgPQwgwEtpyLuUPwJSGlFKUaBVLMmgWR0Cmnt/foA4odX2UKGgGaAloD0MIJgD/lCrRDcCUhpRSlGgVSzJoFkdApqDepIczZnV9lChoBmgJaA9DCJ8DyxEyMBLAlIaUUpRoFUsyaBZHQKaghJxNqQB1fZQoaAZoCWgPQwgEHa1qSUcIwJSGlFKUaBVLMmgWR0CmoCzpxFRYdX2UKGgGaAloD0MIJ8Eb0qjgB8CUhpRSlGgVSzJoFkdApp/VXeWOZXV9lChoBmgJaA9DCFETfT7KaAfAlIaUUpRoFUsyaBZHQKahw77Kq4p1fZQoaAZoCWgPQwg/qIsUysIJwJSGlFKUaBVLMmgWR0CmoWmqYJE6dX2UKGgGaAloD0MIs3vysFC7E8CUhpRSlGgVSzJoFkdApqEScG1QZXV9lChoBmgJaA9DCENVTKWfkAvAlIaUUpRoFUsyaBZHQKagu40/GER1fZQoaAZoCWgPQwgb17/rMycIwJSGlFKUaBVLMmgWR0CmorcfV7QcdX2UKGgGaAloD0MINWH7yRi/C8CUhpRSlGgVSzJoFkdApqJdb5dnkHV9lChoBmgJaA9DCNI41O/Clg7AlIaUUpRoFUsyaBZHQKaiBfNzKcN1fZQoaAZoCWgPQwhz9s5oq/IQwJSGlFKUaBVLMmgWR0Cmoa7Gm1pkdX2UKGgGaAloD0MIvXDnwkhPCMCUhpRSlGgVSzJoFkdApqOd74SHunV9lChoBmgJaA9DCGx8JvvnSQrAlIaUUpRoFUsyaBZHQKajQ9hZyMl1fZQoaAZoCWgPQwizlZf8Tz4MwJSGlFKUaBVLMmgWR0CmouwjUutfdX2UKGgGaAloD0MIcCcR4V8kDsCUhpRSlGgVSzJoFkdApqKUi4axYHV9lChoBmgJaA9DCDYiGAeXzgbAlIaUUpRoFUsyaBZHQKak2PXkHUt1fZQoaAZoCWgPQwixFMlXAukNwJSGlFKUaBVLMmgWR0CmpH+98JD3dX2UKGgGaAloD0MIsYnMXOCCE8CUhpRSlGgVSzJoFkdApqQo0/GEPHV9lChoBmgJaA9DCC+nBMQk/AfAlIaUUpRoFUsyaBZHQKaj0bgjyFx1fZQoaAZoCWgPQwjDmzV4X7UFwJSGlFKUaBVLMmgWR0CmpjsfigkDdX2UKGgGaAloD0MI5l31gHlIEMCUhpRSlGgVSzJoFkdApqXhradtmHV9lChoBmgJaA9DCIbGE0GcRwvAlIaUUpRoFUsyaBZHQKaliuxKQJZ1fZQoaAZoCWgPQwiaYDjXMGMLwJSGlFKUaBVLMmgWR0CmpTP4ubqhdX2UKGgGaAloD0MIQbgCCvU0CcCUhpRSlGgVSzJoFkdApqfbfk3juXV9lChoBmgJaA9DCFmHo6t0NxDAlIaUUpRoFUsyaBZHQKanghIOH311fZQoaAZoCWgPQwjK3HwjugcMwJSGlFKUaBVLMmgWR0Cmpys0xdpqdX2UKGgGaAloD0MIHqm+84vyEMCUhpRSlGgVSzJoFkdApqbUabWmQHV9lChoBmgJaA9DCEj5SbVPJwPAlIaUUpRoFUsyaBZHQKapbJDE3sJ1fZQoaAZoCWgPQwh8YTJVMGoKwJSGlFKUaBVLMmgWR0CmqRNXxOLzdX2UKGgGaAloD0MIDHTtC+jlC8CUhpRSlGgVSzJoFkdApqi8XtShrXV9lChoBmgJaA9DCOyFAraDcQ3AlIaUUpRoFUsyaBZHQKaoZbeMyad1fZQoaAZoCWgPQwjhs3VwsPcOwJSGlFKUaBVLMmgWR0CmqvxHf/FSdX2UKGgGaAloD0MIoBov3STmBMCUhpRSlGgVSzJoFkdApqqjCP6sQ3V9lChoBmgJaA9DCN0J9l/nthTAlIaUUpRoFUsyaBZHQKaqS+tbLU11fZQoaAZoCWgPQwivJHmu7yMPwJSGlFKUaBVLMmgWR0CmqfUIsyzpdX2UKGgGaAloD0MIADyiQnVTBcCUhpRSlGgVSzJoFkdApqyDoUzsQnV9lChoBmgJaA9DCMo2cAfqVAfAlIaUUpRoFUsyaBZHQKasKidJ8OV1fZQoaAZoCWgPQwj9o2/SNMgKwJSGlFKUaBVLMmgWR0Cmq9M+mm+CdX2UKGgGaAloD0MIVMTpJFu9DMCUhpRSlGgVSzJoFkdApqt8TzundnV9lChoBmgJaA9DCPJDpREz+w/AlIaUUpRoFUsyaBZHQKauCUeMhox1fZQoaAZoCWgPQwicps8OuC4MwJSGlFKUaBVLMmgWR0Cmra+40/GEdX2UKGgGaAloD0MI0eejjLjABcCUhpRSlGgVSzJoFkdApq1YsiB5HHV9lChoBmgJaA9DCI9QM6SK4g/AlIaUUpRoFUsyaBZHQKatAksSTQp1fZQoaAZoCWgPQwimmIOgo/UJwJSGlFKUaBVLMmgWR0CmryKI7/4qdX2UKGgGaAloD0MIOIHptG7DEMCUhpRSlGgVSzJoFkdApq7IgHNX5nV9lChoBmgJaA9DCHHl7J3RVgnAlIaUUpRoFUsyaBZHQKaucNQTEit1fZQoaAZoCWgPQwj4GRcOhKQKwJSGlFKUaBVLMmgWR0CmrhlHavicdX2UKGgGaAloD0MIxQJf0a23CcCUhpRSlGgVSzJoFkdAprAEnXumanV9lChoBmgJaA9DCOdtbHakugvAlIaUUpRoFUsyaBZHQKavqow22oh1fZQoaAZoCWgPQwj600Z1OkAQwJSGlFKUaBVLMmgWR0Cmr1LaEi+tdX2UKGgGaAloD0MIGMxfIXOlDcCUhpRSlGgVSzJoFkdApq77PGACn3V9lChoBmgJaA9DCDoi36XUBQzAlIaUUpRoFUsyaBZHQKaw8Ly+YdB1fZQoaAZoCWgPQwgL7DGR0hwRwJSGlFKUaBVLMmgWR0CmsJahHskZdX2UKGgGaAloD0MIDOpb5nRZCMCUhpRSlGgVSzJoFkdAprA+4iHIqHV9lChoBmgJaA9DCNUFvMywUQPAlIaUUpRoFUsyaBZHQKav5zltCRh1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0853bf5c7d42a55f367d5e4e2415d87e100eb7fa9c62d8cf77a0e26db4b1d231
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6d0326a316c1e4ecdf30d5d1d88000e84ef9f3963738f39b605440fb50b84b6
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb773bbc5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb773bbe480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681660720947593727, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATtwQP84c4bwYSR8/TtwQP84c4bwYSR8/TtwQP84c4bwYSR8/TtwQP84c4bwYSR8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAu2abP+e9bD/sQLA/imC9vpfBHb+jUlC/YBeWPg6brT9qa4w/vB8SP0VTKT8JYn+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABO3BA/zhzhvBhJHz9Ngqc8YKqxu6l8qTxO3BA/zhzhvBhJHz9Ngqc8YKqxu6l8qTxO3BA/zhzhvBhJHz9Ngqc8YKqxu6l8qTxO3BA/zhzhvBhJHz9Ngqc8YKqxu6l8qTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.5658616 -0.02747956 0.6222091 ]\n [ 0.5658616 -0.02747956 0.6222091 ]\n [ 0.5658616 -0.02747956 0.6222091 ]\n [ 0.5658616 -0.02747956 0.6222091 ]]", "desired_goal": "[[ 1.2140726 0.9247727 1.3769813 ]\n [-0.36987716 -0.6162352 -0.81376094]\n [ 0.2931471 1.3562944 1.097028 ]\n [ 0.5707967 0.66142684 -0.99758965]]", "observation": "[[ 0.5658616 -0.02747956 0.6222091 0.02044787 -0.00542192 0.02068933]\n [ 0.5658616 -0.02747956 0.6222091 0.02044787 -0.00542192 0.02068933]\n [ 0.5658616 -0.02747956 0.6222091 0.02044787 -0.00542192 0.02068933]\n [ 0.5658616 -0.02747956 0.6222091 0.02044787 -0.00542192 0.02068933]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8kGUvXZ4IDyGGno+9W6YvVY7Ib3s8ow8giYLPjUgKD21d5I+DqeJvW9Nh7380Pw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07239141 0.00979435 0.2442418 ]\n [-0.07443038 -0.03936323 0.01720568]\n [ 0.13588908 0.04104634 0.28606954]\n [-0.06721316 -0.06606566 0.12344548]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINpVFYRc1EMCUhpRSlIwBbJRLMowBdJRHQKaWzJU5uIh1fZQoaAZoCWgPQwi/DwcJUd4NwJSGlFKUaBVLMmgWR0CmlnKyGBWgdX2UKGgGaAloD0MIwxA5fT3/DsCUhpRSlGgVSzJoFkdAppYa9wm3OXV9lChoBmgJaA9DCEwXYvVHOAvAlIaUUpRoFUsyaBZHQKaVw20AtFt1fZQoaAZoCWgPQwhruMg9Xb0IwJSGlFKUaBVLMmgWR0Cml7ArQPZqdX2UKGgGaAloD0MIqVDdXPw9EcCUhpRSlGgVSzJoFkdAppdWIO6NEXV9lChoBmgJaA9DCOAtkKD40Q3AlIaUUpRoFUsyaBZHQKaW/mmtQsR1fZQoaAZoCWgPQwgS3EjZIgkQwJSGlFKUaBVLMmgWR0CmlqcBltj1dX2UKGgGaAloD0MIc56xL9nIEMCUhpRSlGgVSzJoFkdAppicMLF4s3V9lChoBmgJaA9DCOYGQx1W2AzAlIaUUpRoFUsyaBZHQKaYQh37k4p1fZQoaAZoCWgPQwglsaTcfV4RwJSGlFKUaBVLMmgWR0Cml+pdSl3ydX2UKGgGaAloD0MInnsPlxzXDMCUhpRSlGgVSzJoFkdAppeSwKSgXnV9lChoBmgJaA9DCDMV4pF4eQ/AlIaUUpRoFUsyaBZHQKaZgmxdIG11fZQoaAZoCWgPQwjxoURLHm8PwJSGlFKUaBVLMmgWR0CmmSkYwZfldX2UKGgGaAloD0MIRuwTQDFyC8CUhpRSlGgVSzJoFkdAppjSPluFYnV9lChoBmgJaA9DCG0CDMufXxDAlIaUUpRoFUsyaBZHQKaYe0GeMAF1fZQoaAZoCWgPQwhsmKHxRGAQwJSGlFKUaBVLMmgWR0CmmnRTbWVedX2UKGgGaAloD0MIMPZefNHeDcCUhpRSlGgVSzJoFkdAppoaQFLWZ3V9lChoBmgJaA9DCOBkG7gDlRLAlIaUUpRoFUsyaBZHQKaZwotthux1fZQoaAZoCWgPQwivmBHeHiQNwJSGlFKUaBVLMmgWR0CmmWruIAOsdX2UKGgGaAloD0MIiGh0B7ETCcCUhpRSlGgVSzJoFkdApptapgkTpXV9lChoBmgJaA9DCEtXsI14ohLAlIaUUpRoFUsyaBZHQKabAJAMUh51fZQoaAZoCWgPQwhB740hAFgKwJSGlFKUaBVLMmgWR0Cmmqj8DSw4dX2UKGgGaAloD0MIe9tMhXhkD8CUhpRSlGgVSzJoFkdApppRcLSeAnV9lChoBmgJaA9DCO25TE2CFwvAlIaUUpRoFUsyaBZHQKacSrsByS51fZQoaAZoCWgPQwgtIorJGyALwJSGlFKUaBVLMmgWR0Cmm/DoQnQZdX2UKGgGaAloD0MIRiV1AprIB8CUhpRSlGgVSzJoFkdAppuZQSBbwHV9lChoBmgJaA9DCJ0SEJNwQQrAlIaUUpRoFUsyaBZHQKabQa9bor51fZQoaAZoCWgPQwgMPzifOhYTwJSGlFKUaBVLMmgWR0CmnTPoV2zOdX2UKGgGaAloD0MIyJQPQdWoCMCUhpRSlGgVSzJoFkdAppzZ2bG3nnV9lChoBmgJaA9DCMjuAiUFdgvAlIaUUpRoFUsyaBZHQKacgkO7QLN1fZQoaAZoCWgPQwjwi0tV2lIRwJSGlFKUaBVLMmgWR0CmnCrt/nW8dX2UKGgGaAloD0MIBfpEniT9CsCUhpRSlGgVSzJoFkdApp4V12aDw3V9lChoBmgJaA9DCJvG9lrQ2wrAlIaUUpRoFUsyaBZHQKadu9xIatN1fZQoaAZoCWgPQwhmiGNd3IYDwJSGlFKUaBVLMmgWR0CmnWSGBWgfdX2UKGgGaAloD0MIGjGzz2O0D8CUhpRSlGgVSzJoFkdApp0M47zTW3V9lChoBmgJaA9DCI6u0t119gfAlIaUUpRoFUsyaBZHQKae/d+G47R1fZQoaAZoCWgPQwhw6ZjzjJ0LwJSGlFKUaBVLMmgWR0CmnqRPfsNUdX2UKGgGaAloD0MI7iJMUS7NDsCUhpRSlGgVSzJoFkdApp5M8JUo8nV9lChoBmgJaA9DCIuLo3ITlQ/AlIaUUpRoFUsyaBZHQKad9b/Ot4l1fZQoaAZoCWgPQwgijQqcbEMNwJSGlFKUaBVLMmgWR0Cmn+kBsANodX2UKGgGaAloD0MI9z5VhQYCCsCUhpRSlGgVSzJoFkdApp+O5paibnV9lChoBmgJaA9DCEt2bATiVQ7AlIaUUpRoFUsyaBZHQKafNzshPj51fZQoaAZoCWgPQwgwEtpyLuUPwJSGlFKUaBVLMmgWR0Cmnt/foA4odX2UKGgGaAloD0MIJgD/lCrRDcCUhpRSlGgVSzJoFkdApqDepIczZnV9lChoBmgJaA9DCJ8DyxEyMBLAlIaUUpRoFUsyaBZHQKaghJxNqQB1fZQoaAZoCWgPQwgEHa1qSUcIwJSGlFKUaBVLMmgWR0CmoCzpxFRYdX2UKGgGaAloD0MIJ8Eb0qjgB8CUhpRSlGgVSzJoFkdApp/VXeWOZXV9lChoBmgJaA9DCFETfT7KaAfAlIaUUpRoFUsyaBZHQKahw77Kq4p1fZQoaAZoCWgPQwg/qIsUysIJwJSGlFKUaBVLMmgWR0CmoWmqYJE6dX2UKGgGaAloD0MIs3vysFC7E8CUhpRSlGgVSzJoFkdApqEScG1QZXV9lChoBmgJaA9DCENVTKWfkAvAlIaUUpRoFUsyaBZHQKagu40/GER1fZQoaAZoCWgPQwgb17/rMycIwJSGlFKUaBVLMmgWR0CmorcfV7QcdX2UKGgGaAloD0MINWH7yRi/C8CUhpRSlGgVSzJoFkdApqJdb5dnkHV9lChoBmgJaA9DCNI41O/Clg7AlIaUUpRoFUsyaBZHQKaiBfNzKcN1fZQoaAZoCWgPQwhz9s5oq/IQwJSGlFKUaBVLMmgWR0Cmoa7Gm1pkdX2UKGgGaAloD0MIvXDnwkhPCMCUhpRSlGgVSzJoFkdApqOd74SHunV9lChoBmgJaA9DCGx8JvvnSQrAlIaUUpRoFUsyaBZHQKajQ9hZyMl1fZQoaAZoCWgPQwizlZf8Tz4MwJSGlFKUaBVLMmgWR0CmouwjUutfdX2UKGgGaAloD0MIcCcR4V8kDsCUhpRSlGgVSzJoFkdApqKUi4axYHV9lChoBmgJaA9DCDYiGAeXzgbAlIaUUpRoFUsyaBZHQKak2PXkHUt1fZQoaAZoCWgPQwixFMlXAukNwJSGlFKUaBVLMmgWR0CmpH+98JD3dX2UKGgGaAloD0MIsYnMXOCCE8CUhpRSlGgVSzJoFkdApqQo0/GEPHV9lChoBmgJaA9DCC+nBMQk/AfAlIaUUpRoFUsyaBZHQKaj0bgjyFx1fZQoaAZoCWgPQwjDmzV4X7UFwJSGlFKUaBVLMmgWR0CmpjsfigkDdX2UKGgGaAloD0MI5l31gHlIEMCUhpRSlGgVSzJoFkdApqXhradtmHV9lChoBmgJaA9DCIbGE0GcRwvAlIaUUpRoFUsyaBZHQKaliuxKQJZ1fZQoaAZoCWgPQwiaYDjXMGMLwJSGlFKUaBVLMmgWR0CmpTP4ubqhdX2UKGgGaAloD0MIQbgCCvU0CcCUhpRSlGgVSzJoFkdApqfbfk3juXV9lChoBmgJaA9DCFmHo6t0NxDAlIaUUpRoFUsyaBZHQKanghIOH311fZQoaAZoCWgPQwjK3HwjugcMwJSGlFKUaBVLMmgWR0Cmpys0xdpqdX2UKGgGaAloD0MIHqm+84vyEMCUhpRSlGgVSzJoFkdApqbUabWmQHV9lChoBmgJaA9DCEj5SbVPJwPAlIaUUpRoFUsyaBZHQKapbJDE3sJ1fZQoaAZoCWgPQwh8YTJVMGoKwJSGlFKUaBVLMmgWR0CmqRNXxOLzdX2UKGgGaAloD0MIDHTtC+jlC8CUhpRSlGgVSzJoFkdApqi8XtShrXV9lChoBmgJaA9DCOyFAraDcQ3AlIaUUpRoFUsyaBZHQKaoZbeMyad1fZQoaAZoCWgPQwjhs3VwsPcOwJSGlFKUaBVLMmgWR0CmqvxHf/FSdX2UKGgGaAloD0MIoBov3STmBMCUhpRSlGgVSzJoFkdApqqjCP6sQ3V9lChoBmgJaA9DCN0J9l/nthTAlIaUUpRoFUsyaBZHQKaqS+tbLU11fZQoaAZoCWgPQwivJHmu7yMPwJSGlFKUaBVLMmgWR0CmqfUIsyzpdX2UKGgGaAloD0MIADyiQnVTBcCUhpRSlGgVSzJoFkdApqyDoUzsQnV9lChoBmgJaA9DCMo2cAfqVAfAlIaUUpRoFUsyaBZHQKasKidJ8OV1fZQoaAZoCWgPQwj9o2/SNMgKwJSGlFKUaBVLMmgWR0Cmq9M+mm+CdX2UKGgGaAloD0MIVMTpJFu9DMCUhpRSlGgVSzJoFkdApqt8TzundnV9lChoBmgJaA9DCPJDpREz+w/AlIaUUpRoFUsyaBZHQKauCUeMhox1fZQoaAZoCWgPQwicps8OuC4MwJSGlFKUaBVLMmgWR0Cmra+40/GEdX2UKGgGaAloD0MI0eejjLjABcCUhpRSlGgVSzJoFkdApq1YsiB5HHV9lChoBmgJaA9DCI9QM6SK4g/AlIaUUpRoFUsyaBZHQKatAksSTQp1fZQoaAZoCWgPQwimmIOgo/UJwJSGlFKUaBVLMmgWR0CmryKI7/4qdX2UKGgGaAloD0MIOIHptG7DEMCUhpRSlGgVSzJoFkdApq7IgHNX5nV9lChoBmgJaA9DCHHl7J3RVgnAlIaUUpRoFUsyaBZHQKaucNQTEit1fZQoaAZoCWgPQwj4GRcOhKQKwJSGlFKUaBVLMmgWR0CmrhlHavicdX2UKGgGaAloD0MIxQJf0a23CcCUhpRSlGgVSzJoFkdAprAEnXumanV9lChoBmgJaA9DCOdtbHakugvAlIaUUpRoFUsyaBZHQKavqow22oh1fZQoaAZoCWgPQwj600Z1OkAQwJSGlFKUaBVLMmgWR0Cmr1LaEi+tdX2UKGgGaAloD0MIGMxfIXOlDcCUhpRSlGgVSzJoFkdApq77PGACn3V9lChoBmgJaA9DCDoi36XUBQzAlIaUUpRoFUsyaBZHQKaw8Ly+YdB1fZQoaAZoCWgPQwgL7DGR0hwRwJSGlFKUaBVLMmgWR0CmsJahHskZdX2UKGgGaAloD0MIDOpb5nRZCMCUhpRSlGgVSzJoFkdAprA+4iHIqHV9lChoBmgJaA9DCNUFvMywUQPAlIaUUpRoFUsyaBZHQKav5zltCRh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (870 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.2315908935968762, "std_reward": 0.39891679922725537, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-16T16:48:43.078407"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20d55c21900289f218ebff8e997dc575936ba99ee09c598f4c82b294d6e26b49
3
+ size 2464