--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper base AR - BH results: [] --- # Whisper base AR - BH This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the quran-ayat-speech-to-text-segments dataset. It achieves the following results on the evaluation set: - Loss: 0.0231 - Wer: 0.2331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.017 | 1.3333 | 100 | 0.0233 | 0.2610 | | 0.0148 | 2.6667 | 200 | 0.0216 | 0.2495 | | 0.0094 | 4.0 | 300 | 0.0204 | 0.2438 | | 0.0048 | 5.3333 | 400 | 0.0203 | 0.2409 | | 0.0027 | 6.6667 | 500 | 0.0206 | 0.2421 | | 0.0017 | 8.0 | 600 | 0.0213 | 0.2491 | | 0.0007 | 9.3333 | 700 | 0.0218 | 0.2384 | | 0.0005 | 10.6667 | 800 | 0.0221 | 0.2368 | | 0.0003 | 12.0 | 900 | 0.0224 | 0.2372 | | 0.0003 | 13.3333 | 1000 | 0.0226 | 0.2347 | | 0.0003 | 14.6667 | 1100 | 0.0228 | 0.2327 | | 0.0002 | 16.0 | 1200 | 0.0229 | 0.2335 | | 0.0002 | 17.3333 | 1300 | 0.0230 | 0.2331 | | 0.0002 | 18.6667 | 1400 | 0.0231 | 0.2331 | | 0.0002 | 20.0 | 1500 | 0.0231 | 0.2335 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3