--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper base AR - BH results: [] --- # Whisper base AR - BH This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the quran-ayat-speech-to-text-segments dataset. It achieves the following results on the evaluation set: - Loss: 0.0171 - Wer: 0.2407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0105 | 2.6667 | 100 | 0.0154 | 0.2514 | | 0.0021 | 5.3333 | 200 | 0.0171 | 0.2407 | | 0.0022 | 8.0 | 300 | 0.0200 | 0.2475 | | 0.0026 | 10.6667 | 400 | 0.0215 | 0.2847 | | 0.0027 | 13.3333 | 500 | 0.0237 | 0.2929 | | 0.0014 | 16.0 | 600 | 0.0216 | 0.2548 | | 0.0001 | 18.6667 | 700 | 0.0210 | 0.2386 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3