--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper base AR - BH results: [] --- # Whisper base AR - BH This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the quran-ayat-speech-to-text-segments dataset. It achieves the following results on the evaluation set: - Loss: 0.0259 - Wer: 0.2831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0529 | 1.3333 | 100 | 0.0475 | 0.6531 | | 0.0214 | 2.6667 | 200 | 0.0303 | 0.4790 | | 0.015 | 4.0 | 300 | 0.0302 | 0.4221 | | 0.0098 | 5.3333 | 400 | 0.0304 | 0.4160 | | 0.0105 | 6.6667 | 500 | 0.0313 | 0.4063 | | 0.0074 | 8.0 | 600 | 0.0286 | 0.3631 | | 0.0028 | 9.3333 | 700 | 0.0304 | 0.3639 | | 0.0013 | 10.6667 | 800 | 0.0264 | 0.3263 | | 0.0011 | 12.0 | 900 | 0.0257 | 0.3053 | | 0.0004 | 13.3333 | 1000 | 0.0263 | 0.2993 | | 0.0002 | 14.6667 | 1100 | 0.0256 | 0.2896 | | 0.0 | 16.0 | 1200 | 0.0256 | 0.2855 | | 0.0 | 17.3333 | 1300 | 0.0258 | 0.2843 | | 0.0 | 18.6667 | 1400 | 0.0259 | 0.2831 | | 0.0 | 20.0 | 1500 | 0.0259 | 0.2831 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3