--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper base AR - BH results: [] --- # Whisper base AR - BH This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the quran-ayat-speech-to-text-segments dataset. It achieves the following results on the evaluation set: - Loss: 0.0253 - Wer: 0.1830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0158 | 1.0 | 100 | 0.0179 | 0.2185 | | 0.0131 | 2.0 | 200 | 0.0161 | 0.2154 | | 0.0105 | 3.0 | 300 | 0.0148 | 0.2059 | | 0.0066 | 4.0 | 400 | 0.0144 | 0.2011 | | 0.0046 | 5.0 | 500 | 0.0145 | 0.2011 | | 0.0021 | 6.0 | 600 | 0.0150 | 0.1985 | | 0.0012 | 7.0 | 700 | 0.0154 | 0.1945 | | 0.0004 | 8.0 | 800 | 0.0161 | 0.1890 | | 0.0002 | 9.0 | 900 | 0.0169 | 0.1894 | | 0.0001 | 10.0 | 1000 | 0.0177 | 0.1899 | | 0.0 | 11.0 | 1100 | 0.0185 | 0.1842 | | 0.0 | 12.0 | 1200 | 0.0193 | 0.1850 | | 0.0 | 13.0 | 1300 | 0.0203 | 0.1839 | | 0.0 | 14.0 | 1400 | 0.0214 | 0.1844 | | 0.0 | 15.0 | 1500 | 0.0224 | 0.1804 | | 0.0 | 16.0 | 1600 | 0.0234 | 0.1833 | | 0.0 | 17.0 | 1700 | 0.0243 | 0.1818 | | 0.0 | 18.0 | 1800 | 0.0253 | 0.1830 | | 0.0 | 19.0 | 1900 | 0.0259 | 0.1854 | | 0.0 | 20.0 | 2000 | 0.0261 | 0.1854 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3