File size: 2,222 Bytes
944c56c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
library_name: peft
license: llama3.1
base_model: meta-llama/Llama-3.1-8B-Instruct
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: llama-7b-sst-5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama-7b-sst-5
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3537
- Accuracy: 0.4387
- Precision: 0.4393
- Recall: 0.4264
- F1: 0.4300
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log | 1.4944 | 100 | 1.7838 | 0.3397 | 0.3352 | 0.3371 | 0.3321 |
| No log | 2.9888 | 200 | 1.5155 | 0.3960 | 0.3916 | 0.3767 | 0.3782 |
| No log | 4.4794 | 300 | 1.4366 | 0.4169 | 0.4313 | 0.4031 | 0.4106 |
| No log | 5.9738 | 400 | 1.3832 | 0.4287 | 0.4224 | 0.4207 | 0.4198 |
| 5.8948 | 7.4644 | 500 | 1.3675 | 0.4369 | 0.4489 | 0.4266 | 0.4345 |
| 5.8948 | 8.9588 | 600 | 1.3537 | 0.4387 | 0.4393 | 0.4264 | 0.4300 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0 |