--- library_name: peft license: llama3.1 base_model: meta-llama/Llama-3.1-8B-Instruct tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: llama-7b-sst-5 results: [] --- # llama-7b-sst-5 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3537 - Accuracy: 0.4387 - Precision: 0.4393 - Recall: 0.4264 - F1: 0.4300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.4944 | 100 | 1.7838 | 0.3397 | 0.3352 | 0.3371 | 0.3321 | | No log | 2.9888 | 200 | 1.5155 | 0.3960 | 0.3916 | 0.3767 | 0.3782 | | No log | 4.4794 | 300 | 1.4366 | 0.4169 | 0.4313 | 0.4031 | 0.4106 | | No log | 5.9738 | 400 | 1.3832 | 0.4287 | 0.4224 | 0.4207 | 0.4198 | | 5.8948 | 7.4644 | 500 | 1.3675 | 0.4369 | 0.4489 | 0.4266 | 0.4345 | | 5.8948 | 8.9588 | 600 | 1.3537 | 0.4387 | 0.4393 | 0.4264 | 0.4300 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0